BING算法原理

BING算法原理

BING(Binarizde Normed Gradients)由程明明在2014年CVPR 上的BING: Binarized Normed Gradients for Objectness Estimation at 300fps文献中提出,在1000个预选框的情况下,检测准确率高达96.2%,且速度可达300帧/秒。
BING算法的检测目标是无类别的一般物体。“物体”的最大特点是有完整、闭合的边界,而背景则是杂乱无章的。在梯度空间图上,无论是物体形状如何,只要归一化到一个相同的尺度上(例如8*8),它们就变得十分有共性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值