Multi-task Learning

Deep Learning 回顾之多任务学习 https://www.52ml.net/20775.html?utm_source=tuicool&utm_medium=referral 深度神经网络的多任务学习概览(An Overview of Multi-task ...

2018-01-19 09:44:59

阅读数 1829

评论数 0

数据库

人脸数据库 关注博客:http://haoxiang.org/2013/12/face-recognition-detection-database/ 香港的CelebA: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html WIDERFACE...

2015-12-29 16:40:23

阅读数 1597

评论数 0

开源代码文献

持续跟新Tracking: Learning to Track: Online Multi-Object Tracking by Decision Making ICCV2015 使用 Markov Decision Processes 做跟踪,速度可能比较慢,效果应该还可以 https...

2015-11-18 08:42:39

阅读数 21228

评论数 2

ubuntu 下 python 调用 c++ 错误问题解决

ImportError: /home/whut/anaconda2/bin/…/lib/libgomp.so.1: version GOMP_4.0' not found libstdc++.so.6: versionGLIBCXX_3.4.21’ not found 首先查看一下是否真的不存在 ...

2019-05-05 15:26:13

阅读数 17

评论数 0

git简单命令

查看自己的用户名和邮箱地址:   $ git config user.name   $ git config user.email 修改自己的用户名和邮箱地址:   $ git config --global user.name "xxx"   $ git config --g...

2019-01-22 10:34:12

阅读数 48

评论数 0

人脸识别“A Discriminative Feature Learning Approach for Deep Face Recognition”

Source code: https://github.com/ydwen/caffe-face FaceNet: https://github.com/davidsandberg/facenet 相关的blog:https://blog.csdn.net/dongfang1984/artic...

2019-01-22 10:28:28

阅读数 37

评论数 0

L2-constrained Softmax Loss for Discriminative Face Verification

摘要:softmax损失优化出来的特征不具有较高的类内相似度得分及较低的类间相似度得分。论文增加了特征描述子的L2约束,使得特征分布在具有固定半径的超球上。   大多数现有的使用softmax损失训练的DCNN方法倾向于在高质量的数据上过拟合,对于困难人脸常分类错误。作者通过观察发现,soft...

2019-01-22 10:28:07

阅读数 40

评论数 0

三元组损失“Deep Metric Learning via Lifted Structured Feature Embedding”

http://www.cnblogs.com/wangxiaocvpr/p/5921074.html caffe实现解释:https://blog.csdn.net/zziahgf/article/details/78568696 tensorflow实现:http://10.1.2.209/...

2019-01-22 10:27:10

阅读数 184

评论数 0

人脸检测“Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks”

源码:https://github.com/Jack-CV/PCN-FaceDetection 提出了PCN网络检测任意角度的人脸,网络分为三级,首先将任意角度人脸从[-180°,180°]转到[-90°,90°],第二级将人脸转到[-45°,45°]范围,第三步将人脸转为正脸,示意图为: ...

2018-11-01 11:36:10

阅读数 223

评论数 0

人脸识别“NormFace: L 2 Hypersphere Embedding for Face Verification”

源码地址: https://github.com/happynear/NormFace 研究了特征归一化方法用于增强人脸验证性能,同时提出了两种适应于归一化特征训练的两种策略:基于优化余弦相似度改进的softmax损失,改进的度量学习方法。 在人脸验证中,余弦距离或者L2归一化的欧式距离通常用...

2018-10-31 10:41:09

阅读数 195

评论数 0

深度嵌入学习“Sampling Matters in Deep Embedding Learning”

知乎专栏:https://zhuanlan.zhihu.com/p/27748177 在检索和验证任务中,经常使用contrastive 损失或 triplet损失作为损失函数,大多数论文也主要关注如何选取损失函数,这篇论文认为训练样本的选取也很重要。提出了distance weighed sa...

2018-10-25 17:42:30

阅读数 396

评论数 0

三元损失“In Defense of the Triplet Loss for Person Re-Identification”

更全面的阅读记录可以参考这篇博客:https://blog.csdn.net/xuluohongshang/article/details/78965580 背景描述 提出了一个三元损失的变形用于行人再认证。 近期较为成功的行人再认证方法一般使用分类损失结合验证损失。先使用分类损失训练,然后...

2018-10-24 16:23:27

阅读数 551

评论数 0

DeepID2 "Deep Learning Face Representation by Joint Identification-Verification"

降低类内方差,提升类间方差一直是人脸识别的热点。论文将人脸识别和验证损失同时监督网络的训练,在LFW上获得99.15%的验证准确率。人脸识别是对输入图像分类,验证是判断一对图像是否为同一个ID。 分类信号具有丰富的ID相关信息,或者类间方差,但分类信号对于相同ID的约束较小,即不同的特征可能映射...

2018-10-23 11:12:55

阅读数 82

评论数 0

MegDet: A Large Mini-Batch Object Detector

分类网络如ReseNet-50的mini-batch尺寸已经很大了,如8192或16000.但检测网络的mini-batch尺寸确很小,如2-16。小的batch尺寸有什么问题?一是训练时间长,二是无法为BN提供精确的统计信息。三是正负样本比例不平衡,如下图a-b所示。 但是直接增加batc...

2018-09-19 15:49:37

阅读数 188

评论数 0

目标检测“Cascade R-CNN: Delving into High Quality Object Detection”

目前的目标检测器主要使用IOU=0.5定义正负样本,这通常会产生很多接近负样本的检测结果。但检测性能又会随着IOU的提高而下降,主要是由于:1)IOU提高,正样本数量减少,出现训练过拟合;2)检测器最优时IOU与输入假设时inference-time不匹配。论文提出Cascade RCNN解决这个...

2018-09-06 16:27:44

阅读数 237

评论数 0

姿态估计“2D/3D Pose Estimation and Action Recognition using Multitask Deep Learning”

提出了用于2D/3D姿态估计,及行人行为分析的多任务框架。姿态估计一般做的事热点估计,需要使用argmax函数复原坐标,破坏了端到端的BP链。 姿态估计使用回归的方法,扩展Soft-argmax函数用于处理2D/3D姿态回归。姿态估计网络包括K个预测块,用于调整姿态,最后一个预测是姿态的估计...

2018-08-27 11:03:24

阅读数 1092

评论数 1

行人姿态估计源码AlphaPose

机器环境:ubuntu16.04,cuda8.0 1.torch&tensorflow 版本 源码地址:https://github.com/MVIG-SJTU/AlphaPose 首先跑的是torch版本,安装了torch和tensorflow后运行程序出现如下错误...

2018-08-27 09:04:06

阅读数 1414

评论数 0

多人姿态估计“Cascaded Pyramid Network for Multi-Person Pose Estimation”

**提出目的** 多人姿态估计主要的挑战来自被遮挡的关键点、不可见的关键点及复杂的背景。论文设计了级联金字塔网络(CPN)用于解决这种问题。算法包含GlobalNet和RefineNet两步。基于FPN,GlobalNet用来检测简单的关键点,RefineNet使用在线关键点挖掘损失检测困难度关...

2018-07-23 16:09:59

阅读数 467

评论数 0

Multi person-pose estimation

几篇人体关键点检测的论文 一、Mask R-CNN Mask R-CNN Mask R-CNN同时进行目标检测和实例分割,在Faster-RCNN框架基础上增加mask分支,多任务损失为: L=Lcls+Lbox+LmaskL=Lcls+Lbox+LmaskL=L_{cls}+L_{box...

2018-04-13 11:13:10

阅读数 385

评论数 0

姿态估计及跟踪“Detect-and-Track: Efficient Pose Estimation in Videos”

基于行人检测和视频理解,估计及跟踪人体关键点。首先在单帧或短视频剪辑估计关键点,然后使用轻量级网络生成关键点的估计。单帧的估计使用Mask-RCNN,3D Mask-RCNN。在PoseTrack上对比,MOTA为51.8%。相关工作 单帧图像姿态估计:Mask R-CNN,DeeperCut,...

2018-04-09 16:24:47

阅读数 2389

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭