nuclei-快速漏洞扫描器【安装&使用详解】

★★免责声明★★
文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与学习之用,读者将信息做其他用途,由Ta承担全部法律及连带责任,文章作者不承担任何法律及连带责任。

1、nuclei介绍

Nuclei是一款基于YAML语法模板的开发的定制化快速漏洞扫描器。它使用Go语言开发,具有很强的可配置性、可扩展性和易用性。提供TCP、DNS、HTTP、FILE等各类协议的扫描,通过强大且灵活的模板,可以使用 Nuclei模拟各种安全检查。

项目目前是持续更新中,安装比较简单,一些流程比较单的漏洞会直接提供payload,是我自己比较喜欢的一个工具。

文档默认语言是英文,支持多国语言,也有中文。

项目地址:https://github.com/projectdiscovery/nuclei
Nuclei模板:https://github.com/projectdiscovery/nuclei-templates

2、环境准备

基础环境是kali linux ,ip: 192.168.242.4

如果没有kali系统虚拟机,可关注公众号:大象只为你,后台回复:【虚拟机】获取。

nuclei的安装使用需要go,go版本要求1.21 或更高版本,所以需要先安装go。

2.1、安装go

在kali linux系统下安装会比较简单,使用apt-get命令,安装完成就可使用,不需要再设置环境变量等,安装命令如下:

# 切换到root角色
sudo su
# 更新资源
apt-get update
# 安装golang
apt-get install golang-go
# 查看安装版本
go version

在这里插入图片描述

3、安装nuclei

安装nuclei官方有提供3个方式:go install,Brew和Docker。我首次安装按官方给的命令go install安装失败了,我结合之前afrog安装的经验,按以下步骤安装成功了。

第一步:克隆源码到kali机上,第二步:源码编译,就可以使用了。

如果想再简单一点,可以到releases下载windows或macOs编译好的版本。

安装编译命令如下:

# 切换到工具集目录,目的是方便归类
cd tools
# 克隆源码到kali机
git clone https://github.com/projectdiscovery/nuclei.git
# 切换目录到nuclei
cd nuclei
# 源码编译:指定执行文件名:nuclei
go build -o nuclei cmd/nuclei/main.go
# 查看版本号验证命令是否可正常使用
./nuclei -v
# 更多命令使用参数-h查看
./nuclei -h

在这里插入图片描述

4、使用说明

使用命令可用 ./nuclei -h 来查看,这里只列出2个命令:单个目标和多个目标的扫描,结合在线靶场使用。

更多用法请参考官方文档-用法:https://github.com/projectdiscovery/nuclei/blob/main/README_CN.md

扫描时,如果没有特别指定,就是使用内置所有的模板进行扫描。

在线靶场:https://vulfocus.cn/,选择场景:Strust2

注意:在线靶场里面的漏洞编号与nuclei-templates定义是不太一样的,测试过程发现的,具体以nuclei扫描出来的编号为准。

4.1、使用命令

扫描单个目标:

./nuclei -u http://example.com

扫描多个目标:

./nuclei -list urls.txt

urls.txt内容格式如下:【一行一个url】

https://test1.com
http://test2.com
4.2、扫描单个目标示例

在线靶场先筛选框架:Strust2, 选择编号:CVE-2020-17530,启动靶场。

执行命令结果如下:

在这里插入图片描述

以该示例扫描出来的xss-fuzz提供的payload,拿到浏览器去验证可用。

在这里插入图片描述

另一个漏洞编号:CVE-2021-31805就跟在线靶场的编号不一样,以扫描结果的为准。我拿漏洞编号到百度去搜索漏洞复现,找到github提供一个python脚本和复现步骤说明。

漏洞复现地址:https://github.com/Axx8/Struts2_S2-062_CVE-2021-31805

我跟着步骤验证,只截图前面3个,反弹shell步骤比较多就没截图,感兴趣可以自己跟着步骤操作。

在这里插入图片描述

4.3、扫描多个目标示例

在线靶场先筛选框架:Strust2, 选择2个不同的场景,启动靶场。

在nuclei执行目录下添加一个文本urls.txt,把url按上面格式添加。

执行命令结果如下:

在这里插入图片描述

5、学习资料推荐&我的公众号

在b站有【小迪安全】自己公开2022年的录播课程,感兴趣的可以去看,当然最新的课程只能去报他的直播课了。

地址是:https://www.bilibili.com/video/BV1pQ4y1s7kH/

我有一些学习笔记就是看完他的视频,自己实践操作后整理出来的。

敬请关注我的公众号:大象只为你,持续更新网安相关知识中…

<think>好的,用户想了解嵌入式视觉的学习路线。首先,我需要明确嵌入式视觉涉及哪些方面。通常包括硬件、软件、算法以及系统集成。用户可能是初学者,所以得从基础开始讲起。 首先,基础部分。数学和编程是必须的。数学方面,线性代数、微积分、概率统计这些都很重要,特别是对于图像处理和机器学习。编程的话,C/C++和Python是嵌入式开发常用的语言,得提到这两个。然后硬件基础,比如处理器架构,FPGA和ARM这些,可能用户不太熟悉,需要简单解释一下。 接下来是计算机视觉基础。图像处理的基本操作,比如滤波、边缘检测,还有OpenCV的使用。深度学习的基础知识,CNN、目标检测算法如YOLO和SSD,以及框架如TensorFlow和PyTorch。这部分需要强调实践,比如做项目来巩固知识。 然后是嵌入式系统部分。操作系统方面,Linux是必须的,特别是嵌入式Linux和实时操作系统。交叉编译和移植也很关键,用户需要知道如何将算法部署到嵌入式设备上。优化技术如模型压缩和硬件加速,这里可能需要提到TensorFlow Lite和OpenVINO等工具。 接下来是进阶方向。硬件选型,比如树莓派、Jetson系列,还有摄像头和传感器的选择。算法优化部分,轻量化模型如MobileNet,以及模型量化、剪枝。系统集成方面,软硬件协同设计和实时性优化,这部分需要实际项目经验。 学习资源推荐,书籍和在线课程,比如《计算机视觉:算法与应用》和Coursera的课程。开发板推荐树莓派和Jetson Nano,适合不同需求。开源项目参与也很重要,可以积累经验。 最后实战项目,从简单的开始,逐步深入。比如车牌识别、人脸检测,再到无人机避障这样的复杂项目。持续学习,关注新技术动态,参加社区交流。 需要检查是否有遗漏的部分,比如是否提到了模型部署和优化,这些对嵌入式来说很重要。另外,确保语言通俗易懂,避免太专业的术语,必要时给出例子。结构要清晰,分点列出,方便用户逐步学习。</think>以下为嵌入式视觉学习的系统化路线,分为基础技能、进阶方向和实践框架三部分,以阶梯式结构帮助您高效入门: --- ### **一、基础技能搭建** #### 1. **数学与编程基础** - **数学**:掌握线性代数(矩阵运算、特征值)、微积分(梯度计算)、概率统计(贝叶斯定理) - **编程语言**: - **C/C++**:嵌入式开发核心语言,需熟练指针、内存管理 - **Python**:快速实现算法原型,掌握NumPy、OpenCV库 - **硬件基础**:理解ARM架构、FPGA原理、总线协议(如I2C/SPI) #### 2. **计算机视觉基础** - **图像处理**: - 掌握滤波(高斯/中值滤波)、边缘检测(Sobel/Canny)、直方图均衡化 - 实践工具:OpenCV实现图像变换(仿射/透视变换) - **经典算法**: - 特征提取:SIFT、ORB、HOG - 目标跟踪:光流法、卡尔曼滤波 - **深度学习入门**: - 掌握CNN原理、经典网络(ResNet、MobileNet) - 框架实践:PyTorch/TensorFlow实现MNIST分类 #### 3. **嵌入式系统基础** - **操作系统**:熟悉Linux内核机制、交叉编译链(如gcc-arm) - **实时系统**:FreeRTOS任务调度、优先级管理 - **优化技术**:内存对齐、NEON指令集加速 --- ### **二、进阶方向与工具链** #### 1. **硬件选型** | 平台 | 特点 | 典型应用场景 | |---------------|-------------------------------|--------------------| | 树莓派4B | 低成本,生态完善 | 轻量级图像处理 | | NVIDIA Jetson | GPU加速,支持CUDA | 实时目标检测 | | STM32H7 | 低功耗,硬实时性 | 工业视觉控制 | #### 2. **算法优化技术** - **模型压缩**:知识蒸馏(如DistilBERT)、通道剪枝 - **量化部署**:FP32→INT8转换(TensorRT工具) - **硬件加速**:OpenVINO优化、Vitis AI部署 #### 3. **开发工具链** ```bash # 典型嵌入式视觉部署流程 1. 模型训练(PyTorch) → 2. ONNX转换 → 3. TensorRT优化 → 4. C++嵌入式部署 ``` --- ### **三、实战项目路线图** 1. **初级项目** - 车牌识别系统(OpenCV+Tesseract) - 基于YOLOv5的口罩检测(Jetson Nano部署) 2. **中级项目** - 工业缺陷检测(Halcon+STM32) - 实时SLAM建图(ROS+ORB-SLAM3) 3. **高级项目** - 无人机视觉避障(PX4+OpenCV) - 边缘AI质检系统(TensorRT+多相机同步) --- ### **四、学习资源推荐** - **书籍**:《计算机视觉中的多视图几何》《边缘AI实战》 - **课程**:Coursera《Embedded Vision》(佐治亚理工) - **开源项目**:Darknet框架、Tengine推理引擎 --- ### **五、技术演进关注点** 1. **新兴算法**:Vision Transformer在边缘端的适配 2. **芯片趋势**:RISC-V架构的视觉专用处理器 3. **行业标准**:ISO26262(汽车视觉安全认证) 按照此路线持续学习6-12个月,可达到独立开发工业级嵌入式视觉系统的能力。建议每阶段配合2-3个实践项目深化理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值