问题描述:
搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2*k件过去就行了.但还是会很累,因为2*k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2 = 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.
Input
每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数)
Output
对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行.
Sample Input
2 1 1 3Sample Output
4
题目分析:这个题目有需要决策的地方,在于我们拿不拿当前的物体i,如果拿了那么和谁一起使得疲劳度最小。
我们把物体排个序,我们就可以发现,如果我们拿当前i物体,那么只有俩种组合,和左边组合,和右边组合,最后一个物体只能与左边组合。
dp[i][j]表示在前i个物体(包含第i个物体),拿走j个物体所需的最小疲劳度。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=2050;
int a[maxn],dp[maxn][maxn];
int main()
{
int n,k;
while (scanf("%d%d",&n,&k)!=EOF) {
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n+1);
memset (dp,0,sizeof (dp));
for (int i=1;i<=n;i++) {
for (int j=1;j<=n;j++) {
dp[i][j]=inf;
}
}
for (int i=2;i<=n;i++) {
for (int j=2;j<=i;j+=2) {
dp[i][j]=min(dp[i-1][j],dp[i-2][j-2]+(a[i]-a[i-1])*(a[i]-a[i-1]));
}
}
printf("%d\n",dp[n][2*k]);
}
return 0;
}