DL4NLP
wustjk124
这个作者很懒,什么都没留下…
展开
-
深度学习与自然语言处理(一)
自然语言处理主要研究用计算机来处理、理解以及运用人类语言(又称自然语言)的各种理论和方法,属于人工智能领域的一个重要研究方向,是计算机科学与语言学的交叉学科,又常被称为计算语言学。随着互联网的快速发展,网络文本尤其是用户生成的文本成爆炸式增长,为自然语言处理带来了巨大的应用需求。同时,自然语言处理研究的进步,也为人们更深刻地理解语言的机理和社会的机制提供了一种新的途径,因此具有重要的科学意义。 然...转载 2018-07-18 20:20:25 · 9161 阅读 · 0 评论 -
深度学习与自然语言处理(二)
目录 1.1 自然语言处理的挑战 1.2 神经网络和深度学习 1.3 自然语言处理中的深度学习 1.1 自然语言处理的挑战 自然语言处理是一个设计输入与输出为非结构化自然语言数据的方法和算法的研究领域。人类语言有很强的歧义性(如句子“I ate pizza with friends”(我和朋友一起吃披萨)和“I ate pizza with olives”(我吃了有橄榄的披萨))和...转载 2018-07-20 14:36:56 · 913 阅读 · 0 评论 -
深度学习与自然语言处理(三)——深度学习运用到自然语言处理领域的成功案例
目录 1.全连接前馈神经网络(MLP)的应用 2.卷积神经网络(CNNs)的应用 3.循环和递归神经网络(RNNs)的应用 1.全连接前馈神经网络(MLP)的应用 大部分情况下,全连接前馈神经网络(MLP)能被用来替代线性学习器。这包括二分类或多分类问题,以及更复杂的结构化预测问题。网络的非线性以及易于整合预训练词嵌入的能力经常带来更高的分类精度。一系列工作通过简单地将句法分析器中...转载 2018-07-20 15:29:07 · 2659 阅读 · 0 评论