- 博客(11)
- 收藏
- 关注
原创 更改conda中envs和pkgs路径
2.用vim编辑当前用户的conda配置文件sudo vim ~/.condarc sudo vi ~/.condarc。1.在终端输入conda info,即可查看当前conda虚拟环境和包缓存的位置。- /data/anaconda3/envs #变更后地址。- /root/anaconda3/envs #原地址。- /data/anaconda3/pkgs #变更后地址。- /root/anaconda3/pkgs #原地址。系统自动生成.condarc文件。
2024-07-15 14:33:10 645
原创 大模型评测:OpenCompass
针对如模型安全和模型语言能力的评测,以人的主观感受为主的评测更能体现模型的真实能力,并更符合大模型的实际使用场景。在实际评测中,本文将采用真实人类专家的主观评测与基于模型打分的主观评测相结合的方式开展模型能力评估。针对具有标准答案的客观问题,我们可以我们可以通过使用定量指标比较模型的输出与标准答案的差异,并根据结果衡量模型的性能。同时,由于大语言模型输出自由度较高,在评测阶段,我们需要对其输入和输出作一定的规范和设计,尽可能减少噪声输出在评测阶段的影响,才能对模型的能力有更加完整和客观的评价。
2024-04-25 23:11:01 833 1
原创 Lagent & AgentLego 智能体应用搭建
Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。Arxiv 搜索Bing 地图Google 学术搜索Google 搜索交互式 IPython 解释器IPython 解释器PPTPython 解释器。
2024-04-25 22:24:56 932 1
原创 LMDeploy环境部署
LMDeploy 是一个用于压缩、部署、服务 LLM 的工具包高效推理引擎(TurboMind):开发持久批处理(又称连续批处理)、阻塞KV缓存、动态拆分融合、张量并行、高性能CUDA内核等关键特性,确保LLM推理的高吞吐和低延迟。交互式推理模式:通过在多轮对话过程中缓存注意力的k/v,引擎会记住对话历史,从而避免历史会话的重复处理。量化:LMDeploy 支持多种量化方法和量化模型的高效推理。量化的可靠性已在不同尺度的模型上得到验证。
2024-04-23 23:22:48 522 1
原创 AI产品经理的机器学习算法入门指南
2)解决原理:训练已知的数据,对未知数据进行预测(包含二分类和多分类,如预测结果只有两个离散的值,如“ 0/1、是 / 否”则为二分类,如预测结果是多个离散的值,如“ A/B/C ”则为多分类)。我们可以使用 K 均值聚类算法,根据客户的消费金额、购买频率等属性,将客户划分为不同的类别,以便进行精准的营销策略。支持向量机:支持向量机是一种基于几何概念的分类算法,它通过找到数据空间中的最大间隔超平面来进行分类。决策树:决策树是一种基于树结构的分类算法,它通过一系列的问题来对数据进行分类。
2024-04-22 17:53:17 405
原创 “茴香豆“:零代码搭建你的 RAG 智能助理
RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。1.开发环境搭建:1.2下载安装茴香豆,依赖,GIT仓库1.3按照依赖1.4下载基础文件复制茴香豆所需模型文件,为了减少下载和避免登录问题,所有作业和教程涉及的模型都已经存放在开发机共享文件中。本教程选用。
2024-04-14 23:54:07 747
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人