武天旭
高级安全架构师
业界专家认证
分享 关注
提问 私信
了解更多业界专家
武天旭,高级安全架构师,注册信息安全认证专家,CSDN安全博客专家。多年信息安全行业从业经历,具备中大型企业安全架构设计能力,在应用安全、隐私合规、终端安全、数据安全等多个安全领域具备丰富的理论和实践经验。
  • 744,444
    被访问
  • 428
    原创
  • 2,045
    排名
  • 4,098
    粉丝
  • 7
    领奖
    总分 4,209 当月 112
个人成就
  • 博客专家认证
  • 业界专家认证
  • 获得1,983次点赞
  • 内容获得594次评论
  • 获得2,014次收藏
创作历程
  • 52篇
    2022年
  • 45篇
    2021年
  • 128篇
    2020年
  • 54篇
    2019年
  • 150篇
    2018年
成就勋章
TA的专栏
  • web渗透
    付费
    72篇
  • 移动安全
    付费
    53篇
  • 代码审计
    付费
    53篇
  • Java基础与后端
    付费
    71篇
  • Python基础与后端
    36篇
  • 安全架构
    14篇
  • 隐私合规
    52篇
  • 数据安全与隐私计算
    37篇
  • 安全基础
    32篇
  • 安全杂文
    9篇
关于博主
自我介绍: 关于博主/关于博客
博主邮箱:security_suiyi@163.com
博主微信:MTc2OTY2NzgyMTc
法律或合规同学请直接私信博主添加
---------------------------------
由于非法爬虫猖獗,为抑制非法爬虫,部分非付费的体系性专栏设置为仅粉丝可读,望见谅
  • 最近
  • 文章
  • 问答
  • 收藏
搜TA的内容
搜索 取消

隐私计算--37--演讲实录:深入浅出谈联邦学习

一、前言前段时间受CSDN邀请,为CSDN和易观分析主办的《隐私计算-Meet-up》做隐私计算相关的演讲,最终选题《深入浅出谈联邦学习》,本次分享的内容主要分为三部分,第一部分是联邦学习的背景,第二部分是图解联邦学习,这也是我这次分享内容的核心部分,主要目的是用最直观、最通俗的方式来让大家理解联邦学习,第三部分是联邦学习的技术展望。二、联邦学习的背景我们知道,人工智能的发展让现在的一些服务体验越来越好,越来越智能,但训练人工智能模型却需要非常庞大的基础数据来支撑,这在大多数公司
原创
发布博客 9 小时前 ·
11 阅读 ·
0 点赞 ·
0 评论

隐私计算--36--联邦学习加速方法

一、引子效率是指在保证模型性能不下降的前提下,有效提升联邦学习的训练效率,它是影响联邦学习落地的一个重要因素,其中模型计算和通信传输是影响联邦学习效率的主要原因。对应的,联邦学习效率优化主要就是从算法层面和通信层面来着手,在算法计算和通信两大因素中,通信效率的优化要比计算性能的优化复杂和困难得多,因此,当前联邦学习效率的优化主要方向是尽可能多的将计算放在终端设备中进行,以此减少各终端之间的数据传输。两种优化方法如下:二、同步参数更新的加速方法同步参数更新是指服务端会等待.
原创
发布博客 2022.04.20 ·
992 阅读 ·
2 点赞 ·
1 评论

隐私计算--35--联邦学习安全防御之同态加密

一、Paillier半同态加密算法同态加密又可以分为全同态加密、些许同态加密和半同态加密三种形式。这其中,由于受到性能等因素的约束,当前在工业界主要使用半同态加密算法。Paillier即属于半同态加密算法,其并不满足乘法同态运算,虽然Paillier算法不是全同态加密的,但是与全同态加密算法(FHE)相比,其计算效率大大提升,因此在工业界被广泛应用。我们以 x 表示明文,以 [[x]] 表示其对应的密文,那么Paillier 半同态加密算法满足:[[u+v]] = [[u]] +[[v]].
原创
发布博客 2022.04.11 ·
576 阅读 ·
0 点赞 ·
2 评论

隐私计算--34--联邦学习安全防御之差分隐私

一、集中式差分隐私集中式差分隐私是建立在两个相邻数据集D和D′之上的,相邻数据集是指D和D′之间仅有一条数据不相同,差分隐私技术使得用户无法从获取的输出数据中区分数据是来源于数据集D,还是数据集D′,从而达到保护数据隐私的目的。基于差分隐私的随机梯度下降算法(DPSGD)与传统的随机梯度下降算法(SGD)的主要不同点在于DPSGD算法在每一轮迭代过程中都会进行梯度裁剪和添加高斯噪声。基于差分隐私的深度学习训练算法如下:-----------------------------------
原创
发布博客 2022.04.11 ·
1074 阅读 ·
2 点赞 ·
1 评论

隐私计算--33--联邦学习安全之后门攻击

一、后门攻击定义在联邦学习中,后门攻击是意图让模型对具有某种特定特征的数据做出错误的判断,但模型不会对主任务产生影响。举个例子,在图像识别中,攻击者意图让带有红色的小车都被识别为小鸟,那攻击者会先通过修改其挟持的客户端样本标签,将带有红色的小车标注为小鸟,让模型重新训练,这样训练得到的最终模型在推断的时候,会将带有红色的小车错误判断为小鸟,但不会影响对其他图片的判断。二、攻击策略带有后门攻击行为的联邦学习,其客户端可以分为恶意客户端和正常客户端。不同类型的客户端,其本地训练策..
原创
发布博客 2022.04.10 ·
306 阅读 ·
0 点赞 ·
0 评论

隐私计算--32--联邦学习安全之攻防简介

一、攻联邦学习场景下常见的攻击模式:● 逃逸攻击:攻击者在不改变机器学习模型的前提下,通过对输入样本进行修改,来达到欺骗模型的目的,逃逸攻击主要发生在模型推断阶段。● 数据攻击:也称为数据下毒,机器学习的模型都是基于历史样本数据进行训练得到,因此攻击者可以通过对训练数据进行篡改,让训练得到的模型按照攻击者的意图进行输出。具体来说,由于参与联邦训练的每一个设备端之间是相互独立的,因此,当一个客户端被挟持后,攻击者可以完全控制该客户端,包括对其本地数据进行篡改,从而达到污染整个全局模型的目的,后门攻击就是
原创
发布博客 2022.04.10 ·
307 阅读 ·
2 点赞 ·
0 评论

隐私计算--31--联邦学习在视觉处理业务中的实践(下)

一、传统视觉处理的问题传统的视觉处理任务主要由下面几个步骤:1、首先是将收集来的数据集都集中存放在中心数据库中,并进行集中的图片数据预处理,包括图片数据清理、标注等;2、然后利用这些预处理的数据进行中心化的模型训练;3、最后将训练的模型部署到客户。在实践中,中心化训练模式使得视觉的落地和部署面临许多困难和挑战,主要有以下影响因素:● 数据隐私:视觉数据具有很强的隐私性,这些敏感数据通常不能被上传和使用。● 模型更新:由于网络性能和设备性能的差异,各个节点的数据同步可能不一致。● 数据的不均匀
原创
发布博客 2022.04.07 ·
656 阅读 ·
0 点赞 ·
0 评论

隐私计算--30--联邦学习在视觉处理业务中的实践(上)

一、传统视觉处理存在的问题传统的视觉处理任务主要由下面几个步骤:1、首先是将收集来的数据集都集中存放在中心数据库中,并进行集中的图片数据预处理,包括图片数据清理、标注等;2、然后利用这些预处理的数据进行中心化的模型训练;3、最后将训练的模型部署到客户。在实践中,中心化训练模式使得视觉的落地和部署面临许多困难和挑战,主要有以下影响因素:● 数据隐私:视觉数据具有很强的隐私性,这些敏感数据通常不能被上传和使用。● 模型更新:由于网络性能和设备性能的差异,各个节点的数据同步可能不一致。●
原创
发布博客 2022.04.05 ·
2208 阅读 ·
0 点赞 ·
0 评论

隐私计算--29--联邦学习平台FATE实践

一、FATE平台介绍FATE是全球首个联邦学习工业级开源框架,其基于Python开发,可以让企业和机构在保护数据安全和数据隐私的前提下进行数据协作。 FATE项目使用多方安全计算以及同态加密技术构建底层安全计算协议,以此支持不同种类的机器学习的安全计算,包括逻辑回归、基于树的算法、深度学习和迁移学习等。FATE包括以下主要功能:● 提供了一种基于数据隐私保护的分布式安全计算框架;● 为机器学习、深度学习、迁移学习等常用算法提供了高性能的安全计算支持;● 支持包括同态加密、秘密共亨、Diffie H
原创
发布博客 2022.04.01 ·
2244 阅读 ·
1 点赞 ·
0 评论

隐私计算--28--Pyhton完成横向联邦图像分类

一、常见的配置概念联邦学习在开发过程中会涉及大量的参数配置,其中比较常用的参数设置包括以下几个:● 训练的客户端数量:每一轮的迭代,服务端会首先从所有的客户端中挑选部分客户端进行本地训练,挑出部分不仅不会影响全局收敛的效果,而且能够提升训练的效率。● 全局迭代次数:即服务端和客户端的通信次数。通常会设置一个最大的全局迭代次数,但在训练过程中,只要模型满足收敛的条件,那么训练也可以提前终止。● 本地模型的迭代次数:即每一个客户端在进行本地模型训练时的迭代次数。每一个客户端的本地模型的迭代次数可以相同,
原创
发布博客 2022.03.31 ·
2155 阅读 ·
0 点赞 ·
0 评论

安全合规--52--安全合规审计平台bombus-2.0部署实践

一、引子陌陌近期开源了他们的安全合规审计平台bombus-2.0,因此打算搭建起来看看,感觉这个平台对于日常合规工作的开展还是能方便很多的。平台具体就不过多做介绍了,开源项目中的README.md文件已经介绍的很清楚了。
原创
发布博客 2022.03.31 ·
889 阅读 ·
0 点赞 ·
0 评论

隐私计算--27--基于CentOS-7搭建联邦学习实验环境

一、部署AnacondaAnaconda下载地址:https://www.anaconda.com/products/individual#Downloads我们此处以Linux为例,部署在CentOS操作系统下二、配置GPU环境配置GPU主要是为了提升模型训练的速度,为了使深度学习框架支持GPU编程,需要安装CUDA和cuDNN。CUDA下载地址:https://developer.nvidia.com/cuda-downloadswget https://developer.downloa
原创
发布博客 2022.03.29 ·
2258 阅读 ·
0 点赞 ·
0 评论

隐私计算--26--联邦强化学习

一、联邦强化学习介绍强化学习(RL)是机器学习的一个分支,主要研究序列决策问题,强化学习系统通常由一个动态环境和与环境进行交互的一个或多个智能体(agent)组成。智能体根据当前环境条件选择动作决策,环境在智能体决策的影响下发生相应改变,智能体可以根据自身的决策以及环境的改变过程得出奖励。对于智能体的周期,智能体首先会观察环境的状态,然后基于这个状态选择动作,同时智能体期望根据所选的动作从环境中得到奖励,智能体的奖励与其上一步的状态、下一步状态和所做出的决策等因素有关。因此,智能体会在【状态-动作-奖励
原创
发布博客 2022.03.24 ·
1980 阅读 ·
0 点赞 ·
0 评论

隐私计算--25--联邦学习激励机制

一、贡献的收益对于联邦而言,参与方持续地参与到联邦的学习进程是其长期成功的关键所在。参与方加入联邦,构建一个机器学习模型,从而对联邦作出贡献,训练出的模型可以产生收益,联邦可以与参与方们共享部分收益,以此作为激励。一般情况下,收益分享的方法可以分为三类:● 平等收益。由数据联邦产生的任何效用,都平均分配给帮助生成它的参与方。● 边际收益。数据联邦中的参与方的效益是它加入团队时所产生的效用。● 边际损失。数据联邦中的参与方的效益是它离开团队时所产生的效用。一般而言,一个参与方
原创
发布博客 2022.03.22 ·
392 阅读 ·
0 点赞 ·
0 评论

隐私计算--24--联邦迁移学习

一、联邦学习的定义横向联邦学习和纵向联邦学习要求所有的参与方具有相同的特征空间或样本空间,从而建立起一个有效的共享机器学习模型。然而,在更多的实际情况下,各个参与方所拥有的数据集可能存在高度的差异,例如:参与方的数据集之间可能只有少量的重叠样本和特征,并且这些数据集的规模与分布情况可能差别很大,此时横向联邦学习与纵向联邦学习就不是很适合了。在这种情况下,通过迁移学习技术,使其可以应用于更广的业务范围,同时可以帮助只有少量数据(较少重叠的样本和特征)和弱监督(较少标记)的应用建立有效且精确的机器学习模
原创
发布博客 2022.03.18 ·
681 阅读 ·
0 点赞 ·
0 评论

隐私计算--23--纵向联邦学习

一、纵向联邦学习的定义纵向联邦学习(VFL)一般是适用于数据集上具有相同的样本空间、不同的特征空间的参与方所组成的联邦学习场景,纵向联邦学习也可以理解为按特征划分的联邦学习。举个例子,我们假设有两家公司A和B想要协同地训练一个机器学习模型,每一家公司都拥有各自的数据。例如保险公司与银行合作,根据同一用户的购买历史与消费习惯,为该用户提供定制化的服务;医院与制药公司合作,通过利用同类患者的医疗记录,从而治疗患者的慢性疾病,并降低患者未来住院治疗的风险。
原创
发布博客 2022.03.16 ·
1547 阅读 ·
0 点赞 ·
0 评论

隐私计算--22--横向联邦学习

一、横向联邦学习的定义横向联邦学习也称为按样本划分的联邦学习,主要应用于各个参与方的数据集有相同的特征空间和不同的样本空间的场景,例如两个地区的城市商业银行可能在各自的地区拥有非常不同的客户群体,所以他们的客户交集非常小,并且数据集有不同的样本ID,然而他们的业务模型却非常相似,因此他们的数据集的特征空间是相同的。由此,这两家银行就可以联合起来进行横向联邦学习以构建更好的风控模型。二、横向联邦学习的架构横向联邦学习有两种常用的系统架构,分别是`客户-服务器架构`和`对等网络架构`。2.1、客
原创
发布博客 2022.03.13 ·
679 阅读 ·
2 点赞 ·
0 评论

隐私计算--21--分布式机器学习

一、分布式机器学习定义分布式机器学习(DML)是指利用多个计算节点进行机器学习或者深度学习的算法和系统,旨在提高性能、保护隐私,并可扩展至更大规模的训练数据和更大的模型。举个例子,一个由三个计算节点和一个参数服务器组成的分布式机器学习系统如下,训练数据被分为不相交的数据分片并被发送给各个计算节点,计算节点将在本地执行随机梯度下降(SGD)。计算节点将梯度或者模型参数发送至参数服务器。
原创
发布博客 2022.03.08 ·
2411 阅读 ·
0 点赞 ·
0 评论

隐私计算--20--同态加密概述

一、同态加密的概念同态加密是基于数学难题的计算复杂性理论的密码学技术。对经过同态加密的数据进行处理得到一个输出,将这一输出进行解密,其结果与用同一方法处理未加密的原始数据得到的输出结果是一样的。举个例子,把1加密成A,把2加密成B,然后A+B的结果等于C,然后C能够正确解密为3。了解密码学的人都知道,加密后的密文是不能直接进行计算的,而这正是同态加密所解决的问题。
原创
发布博客 2022.03.06 ·
8102 阅读 ·
2 点赞 ·
1 评论

【代码审计】专栏文章汇总

代码审计–1--代码审计基础代码审计–2--认证会话管理代码审计–3--输入输出验证代码审计–4--授权管理代码审计–5--业务安全代码审计–6--调试信息&日志安全代码审计–7--第三方组件代码审计–8--环境搭建+工具使用代码审计–9--Java web基础代码审计–10–源代码审计思路(上)代码审计–11–源代码审计思路(下)代码审计–12–竞争条件漏洞代码审计–13–XML注入漏洞代码审计–14–CSRF漏洞代码审计–15–修复方案汇总代码审计–16–Forti
原创
发布博客 2022.03.04 ·
3762 阅读 ·
1 点赞 ·
1 评论
加载更多