Obsidian的Bases数据库入门教程,使用数据库实现Todo待办管理系统

Obsidian数据库

Obsidian发布 Bases 数据库已经有一段时间了,数据库的功能上线,将会重新定义Obsidian的玩法,一篇文章带你了解数据库的玩法,并实现开发任务待办管理功能,附数据库模板,导入即用,效果如下图。

 

待办任务视图

 

准备工作

查看你的Obsidian的版本至少需要大于 1.9.10 版本才可以支持。我目前的版本是1.10.6

 

你需要去设置 => 核心插件 中启用数据库功能

 

sjk

开启之后就可以 再新增笔记的时候 新增数据库

 

base

 

Bases 数据库入门认识

Obsidian的数据库创建默认展示的你全库的数据,也就是你不管你再仓库的那个目录下创建,他展示的都是你整个仓库的数据。

 

因为Bases数据库展示的是全库的数据,所以你需要针对数据库做自定义的筛选,实现自定义布局。

sjk筛选

 

表格

视图

这个的作用是做自定义的筛选的视图,可以方便你管理你自己想要的视图,使用引用的方式也很简单

![[待办已办.base#我的一天]]

待办已办.base 就是你的视图,#号后面就跟随你需要展示的对应视图。

视图布局有三种 表格 卡片 列表

 

排序

针对已经筛选的属性进行排序,这个简单好理解

 

筛选功能

筛选

这个是比较重要的一个属性,你的数据库视图展示什么数据,全都依赖这个筛选的功能,他支持的筛选条件特别多,还支持你写函数公式。

 

属性

筛选是为了展示你想要的数据,但是默认的基础属性都比较有限,比如 时间,文件名称,文件夹,扩展名称。Obsidian的Bases数据默认展示的是全库的数据,当你需要更精细化的区分数据的时候,那么你就需要使用属性配合。给文章打上属性类型,然后基于筛选,你就可以很轻松的筛选出来你想要的数据了。

 

参考案例:

1、你可以创建个Bases数据库,卡片布局,然后筛选扩展名称为png,jpg等图片类型,即可完成一个画廊的功能。

2、你可以设置筛选条件为,md扩展的数据,然后创建时间为最近一个月的,即可完成一个最近笔记的功能。

3、你可以进阶的设置 筛选条件,筛选当前目录下的 文件,附件,等可以轻松的获取到指定目录下的指定的数据。

代码函数

 

如上图,判断文件的路径包含当前目录,也就是查询当前目录下的文件数据。

 

官方公式地址:https://help.obsidian.md/bases/functions

国内中文镜像站:https://coffeetea.top/zh/bases/

 

新建

新建待办

 

当前你再某个数据库中新建的时候,他是会默认的给你带上视图的属性的,但是官方这个新增目前有一个很坑的地方,他的新建是某个基于你的配置,建立再根目录下的,说实话不是很好用,期望后面可以优化一下,不然我还得手动的去移动一下文件才行。

 

实现开发任务视图管理

刚刚我们学习了 数据库的视图基本操作,现在来完成一个任务待办功能。

 

待办需要使用的笔记属性

笔记属性

todo:复选框类型-是为了标识待办的笔记文件是那些,因为Bases数据库默认是全库的数据,我们需要隔离开

待办状态:复选框类型-标记是否完成了

星标:复选框类型-是否星标

我的一天:复选框类型-是否今日完成

其他基础信息

 

最后我们基于数据库的筛选功能,筛选对应的属性,即可完成我们自己想要的视图了

视图最后

本项目构建于RASA开源架构之上,旨在实现一个具备多模态交互能力的智能对话系统。该系统的核心模块涵盖自然语言理解、语音转文本处理以及动态对话流程控制三个主要方面。 在自然语言理解层面,研究重点集中于增强连续对话中的用户目标判定效能,并运用深度神经网络技术提升关键信息提取的精确度。目标判定旨在解析用户话语背后的真实需求,从而生成恰当的反馈;信息提取则专注于从语音输入中析出具有特定意义的要素,例如个体名称、空间位置或时间节点等具体参数。深度神经网络的应用显著优化了这些功能的实现效果,相比经典算法,其能够解析更为复杂的语言结构,展现出更优的识别精度与更强的适应性。通过分层特征学习机制,这类模型可深入捕捉语言数据中隐含的语义关联。 语音转文本处理模块承担将音频信号转化为结构化文本的关键任务。该技术的持续演进大幅提高了人机语音交互的自然度与流畅性,使语音界面日益成为高效便捷的沟通渠道。 动态对话流程控制系统负责维持交互过程的连贯性与逻辑性,包括话轮转换、上下文关联维护以及基于情境的决策生成。该系统需具备处理各类非常规输入的能力,例如用户使用非规范表达或对系统指引产生歧义的情况。 本系统适用于多种实际应用场景,如客户服务支持、个性化事务协助及智能教学辅导等。通过准确识别用户需求并提供对应信息或操作响应,系统能够创造连贯顺畅的交互体验。借助深度学习的自适应特性,系统还可持续优化语言模式理解能力,逐步完善对新兴表达方式与用户偏好的适应机制。 在技术实施方面,RASA框架为系统开发提供了基础支撑。该框架专为构建对话式人工智能应用而设计,支持多语言环境并拥有活跃的技术社区。利用其内置工具集,开发者可高效实现复杂的对话逻辑设计与部署流程。 配套资料可能包含补充学习文档、实例分析报告或实践指导手册,有助于使用者深入掌握系统原理与应用方法。技术文档则详细说明了系统的安装步骤、参数配置及操作流程,确保用户能够顺利完成系统集成工作。项目主体代码及说明文件均存放于指定目录中,构成完整的解决方案体系。 总体而言,本项目整合了自然语言理解、语音信号处理与深度学习技术,致力于打造能够进行复杂对话管理、精准需求解析与高效信息提取的智能语音交互平台。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值