隐私保护机器学习
文章平均质量分 92
隐私保护机器学习
WuwuwuH_
科研废柴
展开
-
【联邦学习+区块链】TORR: A Lightweight Blockchain for Decentralized Federated Learning
为了解决联邦学习方案中存在的问题,文章提出了一种用于联邦学习的轻量级区块链 TORR。一种新颖的共识协议可靠性证明旨在实现快速共识,同时减轻掉队者的影响。同时基于纠删码和周期性存储刷新策略设计了存储协议。原创 2023-11-15 11:12:53 · 1822 阅读 · 7 评论 -
【联邦学习+区块链】Blockchain-based decentralized federated learning: A secure and privacy-preserving system
本文重点关注基于区块链的联邦学习框架中的数据和模型安全性,解决两个主要挑战:(1)如何在基于区块链的联邦学习架构中平衡中毒攻击和推理攻击的保护,(2)如何衡量每个参与节点的可信度以提高架构的安全性。聚合模型区块存储上传该聚合模型的验证节点、聚合模型、聚合模型的准确率、训练节点的得分以及下一轮验证节点的替代列表。这样保证了每一轮都是从分数较高且性能没有明显波动的节点中选择验证节点,同时在每一轮训练中,上一轮的验证节点不会知道下一轮的验证节点,以避免验证节点之间的合谋,提高验证节点的可信度。原创 2023-07-31 13:50:18 · 1651 阅读 · 2 评论 -
【联邦学习+区块链】A Blockchain-based Decentralized Federated Learning Framework with Committee Consensus
联邦学习结合区块链,提出了一种基于区块链的去中心化、自治的 FL 架构来应对现阶段所面临的各种挑战。原创 2023-07-19 10:52:39 · 1953 阅读 · 0 评论 -
Towards Blockchain-Based Reputation-Aware Federated Learning
文章将经典的FL重新定义为细粒度(fine-grained)的FL,即在MEC(移动边缘计算)网络的所有三层(即边缘、雾和云)上执行保护隐私的协作学习过程。的链下模型参数,并对它们的性能进行评估,将它们进行hash并存储在MEC网络中的分散存储(如IPFS)中。可以根据数据丰富度、context-awareness、在异构设置中提供具有代表性的非冗余模型更新的能力、掉线参与方的比例、模型更新的质量、模型更新中的统计变化等对相连。在相同的环境下,具有相同的学习任务,产生相同的模型更新。原创 2023-06-07 10:12:50 · 664 阅读 · 0 评论 -
Blockchain-empowered Federated Learning Challenges, Solutions, and Future Directions
这项工作全面调查了区块链empowered联邦学习(BlockFed)的挑战、解决方案和未来方向。首先,我们确定了联邦学习中的关键问题,并解释了为什么区块链提供了解决这些问题的潜在方法。其次,根据联邦学习和区块链功能的集成方式,我们将现有的系统模型分为三类。原创 2023-06-05 20:34:34 · 1685 阅读 · 7 评论 -
PKDGAN: Private Knowledge Distillation with Generative Adversarial Networks
本文提出了一个三方学习框架,即基于生成式对抗网络的私有知识蒸馏(PKDGAN),其中学生从教师那里获得提炼的知识,并使用鉴别器进行训练以产生与教师相似的输出。原创 2023-05-24 10:10:09 · 719 阅读 · 0 评论 -
基于区块链的联邦学习工作流程
基于区块链的联邦学习工作流程及分类原创 2023-02-06 16:37:07 · 2090 阅读 · 0 评论 -
安全多方计算简介
文章目录一、安全多方计算定义二、安全多方计算安全模型1.行为模型2.安全门限三、安全多方计算关键技术1.秘密共享(Secret Sharing, SS)2.不经意传输(Oblivious Transfer, OT)3.混淆电路(Garbled Circuit, GC)一、安全多方计算定义安全多方计算(Secure Multi-Party Computation,SMPC)用于解决一组互不信任的参与方各自持有秘密数据,协同计算一个既定函数的问题。安全多方计算在保证参与方获得正确计算结果的同时,无法获得计原创 2021-11-15 11:35:51 · 13384 阅读 · 0 评论 -
PrivPy: General and Scalable Privacy-Preserving Data Mining
文章提出了一个高效的隐私保护协同数据挖掘框架PrivPy,旨在为数据挖掘编程提供一个优雅的端到端的解决方案。原创 2022-03-19 21:06:31 · 6100 阅读 · 0 评论 -
Integration of Blockchain and Federated Learning for Internet of Things
分布式机器学习1.基于数据的并行化,数据分布在不同的服务器中,训练相同的机器学习模型。2.基于模型平行操作,机器学习模型被划分为几个子模块,使用相同的训练数据训练不同的子模块。联邦学习存在的问题1.终端设备由于资源限制,可能无法与中心服务器分享模型参数。(提出了协作式联邦学习,终端设备与邻居设备共享模型参数,对本地模型数据进行聚合,将聚合模型与中心服务器共享。)2.由于模型参数使用和过多使用通信网络,攻击者能够操纵模型参数来获得隐私数据。区块链网络具有去中心化的性质,该属性使得货币的存储更加安全原创 2022-05-16 09:06:07 · 3432 阅读 · 2 评论 -
LOGAN:Membership Inference Attacks Against Generative Models
LOGAN:Membership Inference Attacks Against Generative Models原创 2022-07-18 09:46:11 · 618 阅读 · 0 评论 -
FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework
使用DP-GAN来生成多种患者数据,差分隐私技术能够保证对训练集数据的隐私保护。利用FL使得医院无需分享原始数据便可共同训练机器学习模型。原创 2022-10-04 10:43:10 · 1320 阅读 · 7 评论 -
【联邦学习+区块链】FLchain: Federated Learning via MEC-enabled Blockchain Network
区块链和联邦学习的结合实现了一种实用的高鲁棒性的去中心化模型训练方案,保证了用户数据的隐私性。训练好的模型参数能够安全地存储在区块链中,对未经授权的访问和恶意行为具有万无一失的抵抗能力原创 2023-02-08 11:03:30 · 5048 阅读 · 4 评论