05. 70爬楼梯

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

递归实现

不得不说递归总是最容易被想到的一种方案,我们可以稍微思考一下怎么来规划最小单元呢。第n个台阶一定是从n-1或者n-2上走上来的,所以到第n个台阶的方法数等于第n-1个台阶的方法数与n-2的方法数相加。我们需要注意的地方在于题目中说到了n一定是一个整数,所以当n等于0时,说明是从第0个台阶到上一个台阶或者第二个台阶的方法数。但是0到1的台阶我们需要单独处理,因为1-2为负数,所以n为0和n为1的情况要单独处理。那么n为0的情况一定是0到2的情况,也是一步。所以n等于0和1的时候直接直接返回1即可。

我们看代码:

var climbStairs = function(n) {
    if(n == 0 || n == 1) return 1
    let n1 = climbStairs(n - 1)
    let n2 = climbStairs(n - 2)
    return n1 + n2
};

console.log(climbStairs(10))

具体思路上面也讲到了,不得不说,这种方案代码简单,思路也容易想到,但是有一个很重要的问题就是容易栈溢出。并且提交以后你就会发现,运行超出时间限制,并不是一个合适的思路。

动态规划

动态规划的思路就是整理出对应的公式和初始化数据,我们上面也讲到了第n个台阶一定是从n-1或者n-2上走上来的,所以到第n个台阶的方法数等于第n-1个台阶的方法数与n-2的方法数相加。那么可以推算出f(n) = f(n - 1) + f(n - 2),初始化f(0) = f(1) = 1。

公式都出来了我们直接上代码:

var climbStairs = function(n) {
    let ret = new Array()
    ret[0] = 1
    ret[1] = 1
    for(let i = 2; i <= n; i++){
        ret[i] = ret[i - 1] + ret[i - 2]
    }
    return ret[n]
};

通过ret数组来记录上到每一个台阶的方法数,返回最后一个台阶的方法数即可。可以实现,但是如果n特别大,那么我们就需要一个很长很长的数组,确只获得最后一个数即可。仔细观察我们就可以发现,我们只需要一个能记录n-1和n-2的变量即可,那么如果我们每次循环后都让n-2等于n-1,n-1等于n,下一轮的n-1和n-2的值就出来了。

看代码:

// 空间优化
var climbStairs = function(n) {
    let ret = 1
    let arr = []
    arr[0] = 1
    arr[1] = 1
    for(let i = 2; i <= n; i++){
        ret = arr[0] + arr[1]
        arr[0] = arr[1]
        arr[1] = ret
    }
    return ret
};

这里我们就将一个长数组优化为只有两个元素的数组,大大减小了空间使用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值