MapReduce基本处理步骤如下:

MapReduce是一种处理大规模数据集的编程模型,通过将数据分片并行处理,再汇总结果来实现高效的数据处理。本文详细介绍了MapReduce的基本处理步骤,包括数据分片、键值对解析、map任务执行、键值对排序、reduce任务启动和执行等关键环节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MapReduce可以理解为把一堆杂乱无章的数据按照某种特征归并起来,然后处理并得到最后的结果。基本处理步骤如下:

  1. 把输入文件按照一定的标准分片,每个分片对应一个map任务。一般情况下,MapReduce和HDFS运行在同一组计算机上,也就是说,每台计算机同时承担存储和计算任务,因此分片通常不涉及计算机之间的数据复制。
  2. 按照一定的规则把分片中的内容解析成键值对。通常选择一种预定义的规则即可。
  3. 执行map任务,处理每个键值对,输出零个或多个键值对。
  4. MapReduce获取应用程序定义的分组方式,并按分组对map任务输出的键值对排序。默认每个键名一组。
  5. 待所有节点都执行完上述步骤后,MapReduce启动Reduce任务。每个分组对应一个Reduce任务。
  6. 执行reduce任务的进程通过网络获取指定组的所有键值对。
  7. 把键名相同的值合并为列表。
  8. 执行reduce任务,处理每个键对应的列表,输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值