python-并发编程

进程状态图

在这里插入图片描述

同步和异步

描述的是任务的提交方式

  • 同步: 任务提交之后,原地等待任务的返回结果,等待的过程中不做任何事情

  • 异步: 任务提交之后,不原地等待任务的返回结果,直接去做其它事情

    • 任务的返回结果会有一个异步回调机制自动处理

阻塞和非阻塞

描述的是程序的运行状态

  • 阻塞: 阻塞态
  • 非阻塞: 就绪态、运行态

开启进程的两种方式

  • windows系统下,创建进程一定要在main创建,因为windows下创建进程类似于模块导入的方式,会从上往下依次执行代码
  • Linux中则是直接将代码完整的拷贝一份

方式1:

from multiprocessing import Process
import time

def task(name):
    print('%s is running' %name)
    time.sleep(3)
    print('%s is over' %name)


if __name__ == '__main__':
    # 创建一个对象
    p = Process(target=task, args=('wuxing',))
    # 开启进程
    p.start() # 告诉操作系统帮你创建一个进程
    print('主')

方式2:

from multiprocessing import Process
import time

class MyProcess(Process):
    def run(self):
        print('hello world')
        time.sleep(1)
        print('get out!')

if __name__ == '__main__':
    p = MyProcess()
    p.start()
    print('主')
  • 创建进程就是在内存中申请一块内存空间将需要运行的代码放进去
  • 一个进程对应在内存中就是一块独立的内存空间
  • 进程与进程之间数据默认情况下无法直接交互,如果想交互可以借助第三方工具、模块

join方法

join是让主进程等待子进程代码运行结束之后,再继续运行,不影响其它子进程的执行

from multiprocessing import Process
import time

def task(name, n):
    print('%s is running' %name)
    time.sleep(n)
    print('%s is over' %name)


if __name__ == '__main__':
    # p1 = Process(target=task, args=('xia', 1))
    # p2 = Process(target=task, args=('dong', 2))
    # p3 = Process(target=task, args=('zhi', 3))
    # start_time = time.time()
    # p1.start()
    # p2.start()
    # p3.start()
    # # p.join() #主进程等待子进程p运行结束之后再继续执行
    # p1.join()
    # p2.join()
    # p3.join()
    start_time = time.time()
    p_list = []
    for i in range(1, 4):
        p = Process(target=task, args=('子进程%s' %i, i))
        p.start()
        p_list.append(p)
    for p in p_list:
        p.join()
    print('主', time.time() - start_time)

进程间数据隔离

from multiprocessing import Process

money = 100

def task():
    global money #局部修改全局
    money = 666
    print('子', money)

if __name__ == '__main__':
    p = Process(target=task)
    p.start()
    p.join()
    print(money)

进程对象及其它方法

from multiprocessing import Process, current_process
import time
import os

def task():
    # print('%s is running' %current_process().pid) #查看当前进程的进程号
    print('%s is running' %os.getpid()) #查看当前进程的进程号
    #print('子进程的父进程号 %s' %os.getppid()) #查看当前进程的父进程号
    time.sleep(30)

if __name__ == '__main__':
    p = Process(target=task)
    p.start()
    p.terminate() # 杀死当前进程
    time.sleep(0.1)
    print(p.is_alive()) #判断当前进程是否存活
    # print('主', current_process().pid)
    # print('主', os.getpid())
    # print('主主', os.getppid())

僵尸进程与孤儿进程

  • 僵尸进程

    • 当开设了子进程后,该进程死后不会立刻释放占用的进程号,因为要让父进程能够查看到它开设的子进程的一些基本信息(占用的pid号 运行时间等)
    • 所有的进程都会进入僵尸进程阶段
  • 孤儿进程

    • 子进程存活,父进程意外死亡
    • 操作系统会管理孤儿进程回收相关资源
from multiprocessing import Process
import time

def run():
    print('hello world')
    time.sleep(3)
    print('get out')

if __name__ == '__main__':
    p = Process(target=run)
    p.start()
    print('主')

守护进程

随着操作系统的启动而启动,随着操作系统的停止而停止

from multiprocessing import Process
import time

def task(name='egon'):
    print('%s总管正在活着' %name)
    time.sleep(3)
    print('%s总管正在死亡' %name)

if __name__ == '__main__':
    # p = Process(target=task, args=('egon',))
    p = Process(target=task, kwargs={'name': 'egon'})
    p.daemon = True  # 将进程p设置为守护进程,必须放在start之前,否则报错
    p.start()
    print('皇帝jason寿终正寝')

互斥锁

多个进程操作同一份数据时,会出现数据错乱的问题
解决方式就是加锁处理: 将并发变成串行,牺牲效率但是保证数据安全

from multiprocessing import Process, Lock
import json
import time
import random

#查票
def search(i):
    # 文件操作读取票数
    with open('data', 'r', encoding='utf8') as f:
        dic = json.load(f)
    print('用户%s查询余票: %s' %(i, dic.get('ticket_num')))

# 买票 1.先查 2.再买
def buy(i):
    # 查票
    with open('data', 'r', encoding='utf8') as f:
        dic = json.load(f)
    # 模拟网络延迟
    time.sleep(random.randint(1,3))
    # 判断当前是否有票
    if dic.get('ticket_num') > 0:
        #修改数据库买票
        dic['ticket_num'] -= 1
        # 写入数据库
        with open('data', 'w', encoding='utf8') as f:
            json.dump(dic, f)
        print('用户%s买票成功' %i)
    else:
        print('用户%s买票失败' %i)

def run(i, mutex):
    search(i)
    # 给买票环节加锁处理
    # 抢锁
    mutex.acquire()
    buy(i)
    # 释放锁
    mutex.release()

if __name__ == '__main__':
    # 在主进程中生成一把锁,让所有的子进程抢,谁先抢到谁先买票
    mutex = Lock()
    for i in range(1, 10):
        p = Process(target=run, args=(i, mutex))
        p.start()

进程间通信

  • 队列Queue模块

队列:先进先出
堆栈:先进后出

from multiprocessing import Queue

# 创建一个队列
q = Queue(5) # 括号内可以传数字,表示生成的队列最大可以同时存放的数据量

# 往队列中存数据
q.put(111)
q.put(222)
q.put(333)
# print(q.full()) # 判断当前队列是否满了
# print(q.empty()) # 判断当前队列是否空
q.put(444)
q.put(555)
# print(q.full()) # 判断当前队列是否满了
# q.put(666) # 当队列放满了之后,如果还有数据要放,程序会阻塞,直到有位置让出来,不会报错

# 去队列中取数据
v1 = q.get()
v2 = q.get()
v3 = q.get()
v4 = q.get()
v5 = q.get()
# print(q.empty()) # 判断当前队列是否空
# v6 = q.get_nowait() # 没有数据直接报错 queue.Empty
# v6 = q.get(timeout=3) # 没有数据之后,等待三秒之后报错
# v6 = q.get() # 队列中没有数据时,get方法会阻塞
try:
    v6 = q.get(timeout=3)
    print(v6)
except Exception as e:
    print('没有了')

# print(v1, v2, v3, v4, v5, v6)

IPC机制

from multiprocessing import Process
from multiprocessing import Queue


'''
1.主进程跟子进程借助队列通信
2.子进程跟子进程借助队列通信
'''

def producer(q):
    q.put('我是23号技师,很高兴为您服务')
    # print('hello big baby~')

def consumer(q):
    print(q.get())

if __name__ == '__main__':
    q = Queue()
    p = Process(target=producer, args=(q,))
    p1 = Process(target=consumer, args=(q,))
    p.start()
    p1.start()
    # print(q.get())

生产者消费者模型

  • 生产者: 生产/制造数据
  • 消费者: 消费/处理数据
  • 消息队列:暂存数据
from multiprocessing import Process, Queue, JoinableQueue
import time
import random


def producer(name, food, q):
    for i in range(5):
        data = '%s生产了%s%s'%(name, food, i)
        time.sleep(random.randint(1,3))
        print(data)
        q.put(data)

def consumer(name, q):
    while True:
        food = q.get() # 没有数据就会卡主
        # if food is None:
        #     break
        time.sleep(random.randint(1,3))
        print('%s吃了%s'%(name, food))
        q.task_done() # 告诉队列已经从里面取出一个数据并且处理完毕了

if __name__ == '__main__':
    q = JoinableQueue()
    p1 = Process(target=producer, args=('大厨egon', '包子', q))
    p2 = Process(target=producer, args=('马叉虫tank', '泔水', q))
    c1 = Process(target=consumer, args=('春哥', q))
    c2 = Process(target=consumer, args=('新哥', q))
    p1.start()
    p2.start()
    c1.daemon = True
    c2.daemon = True
    c1.start()
    c2.start()
    p1.join()
    p2.join()
    # q.put(None)
    # q.put(None)
    q.join() # 等待队列中所有的数据被取完再往下执行代码

线程

  • 进程:资源单位(在内存空间中开辟一块独立的空间)

  • 线程:执行单位(代码执行过程,执行代码中所需要使用的资源都找所在的进程索要)

  • 每一个进程至少有一个线程

  • 进程和线程都是虚拟单位,只是为了更加方便的描述问题

  • 开设进程

    • 1 申请内存空间 耗资源
    • 2 “拷贝代码” 耗资源
  • 开设线程

    • 一个进程内可以开设多个线程,在同一个进程内开设多个线程无需再申请内存空间
    • 同一个进程下的多个线程数据是共享的

开启线程的两种方式

  • 方式1
from multiprocessing import Process
from threading import Thread
import time

def task(name):
    print('%s is running'%name)
    time.sleep(1)
    print('%s is over'%name)

t = Thread(target=task, args=('egon',))
t.start()
print('主')
  • 方式2
from threading import Thread
import time

class MyThread(Thread):
    def __init__(self, name):
        # 重写了别人的方法,又不知道别人的方法里有啥,就调用父类的方法
        super().__init__()
        self.name = name

    def run(self):
        print('%s is running' %self.name)
        time.sleep(1)
        print('egon DSB')

if __name__ == '__main__':
    t = MyThread('egon')
    t.start()
    print('主')

tcp服务端实现并发效果

server

import socket
from threading import Thread
from multiprocessing import Process

# 服务端
server = socket.socket() #括号内不加参数,默认就是TCP协议
server.bind(('127.0.0.1', 8080))
server.listen(5)


# 服务代码封装
def talk(conn):
    # 通信循环
    while True:
        try:
            data = conn.recv(1024)
            if len(data) == 0:
                break
            print(data.decode('utf-8'))
            conn.send(data.upper())
        except ConnectionResetError as e:
            print(e)
            break
    conn.close()

# 连接循环
while True:
    conn, addr = server.accept()
    t = Thread(target=talk, args=(conn,))
    t.start()

client

import socket

client = socket.socket()
client.connect(('127.0.0.1', 8080))

while True:
    client.send(b'hello world')
    data = client.recv(1024)
    print(data.decode('utf-8'))

线程对象的join方法

from threading import Thread
import time

def task(name):
    print('%s is running' %name)
    time.sleep(3)
    print('%s is over' %name)

if __name__ == '__main__':
    t = Thread(target=task,args=('egon',))
    t.start()
    t.join() #主线程等待子线程运行结束再执行
    print('主')

同一个进程下的多个线程数据是共享的

from threading import Thread
import time

money = 100

def task():
    global money
    money = 666

if __name__ == '__main__':
    t = Thread(target=task)
    t.start()
    t.join()
    print(money)

线程对象属性及其它方法

from threading import Thread, active_count, current_thread
import os, time

def task(n):
    # print('hello world', os.getpid())
    print('hello world', current_thread().name)
    time.sleep(n)

if __name__ == '__main__':
    t = Thread(target=task, args=(1,))
    t1 = Thread(target=task,args=(2,))
    t.start()
    t1.start()
    t1.join()
    print('主', active_count()) # 统计当前正在活跃的线程数
    # print('主', os.getpid())
    # print('主', current_thread().name) # 获取线程名字

守护线程

  • 主线程运行结束之后不会立刻结束,会等待所有其它非守护线程结束才会结束
  • 主线程的结束意味着所在的进程的结束
from threading import Thread
import time

def task(name):
    print('%s is running' %name)
    time.sleep(1)
    print('%s is over' %name)

if __name__ == '__main__':
    t = Thread(target=task, args=('egon',))
    t.daemon = True
    t.start()
    print('主')
from threading import Thread
from multiprocessing import Process
import time

def foo():
    print(123)
    time.sleep(1)
    print('end123')

def func():
    print(456)
    time.sleep(3)
    print('end456')

if __name__ == '__main__':
    t1 = Thread(target=foo)
    t2 = Thread(target=func)
    t1.daemon = True
    t1.start()
    t2.start()
    print('主......')

线程互斥锁

from threading import Thread, Lock
import time

money = 100
mutex = Lock()

def task():
    global money
    mutex.acquire()
    tmp = money
    time.sleep(0.1)
    money = tmp - 1
    mutex.release()

if __name__ == '__main__':
    t_list = []
    for i in range(100):
        t = Thread(target=task)
        t.start()
        t_list.append(t)
    for t in t_list:
        t.join()
    print(money)

GIL全局解释器锁

https://www.cnblogs.com/xiaoyuanqujing/protected/articles/11715730.html

'''
定义:
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple 
native threads from executing Python bytecodes at once. This lock is necessary mainly 
because CPython’s memory management is not thread-safe. (However, since the GIL 
exists, other features have grown to depend on the guarantees that it enforces.)
'''

在Cpython解释器中GIL是一把互斥锁,用来阻止同一个进程下的多个线程的同时执行(同一个进程下的多个线程无法利用多核优势)
因为cpython中的内存管理不是线程安全的

内存管理(垃圾回收机制)

  1. 应用计数
  2. 标记清除
  3. 分代回收

在这里插入图片描述

  • 1 GIL不是python的特点而是Cpython解释器的特点
  • 2 GIL是保证解释器级别的数据安全
  • 3 GIL会导致同一个进程下的多个线程无法同时执行
  • 4 针对不同的数据还是需要加不同的锁处理
  • 5 解释型语言的通病: 同一个进程下多个线程无法利用多核优势

GIL与普通互斥锁的区别

from threading import Thread, Lock
import time

mutex = Lock()

money = 100

def task():
    global money
    # with mutex:
    #     tmp = money
    #     time.sleep(0.1) # 遇到io会释放GIL
    #     money = tmp - 1
    mutex.acquire()
    tmp = money
    time.sleep(0.1)
    money = tmp - 1
    mutex.release()

if __name__ == '__main__':
    t_list = []
    for i in range(100):
        t = Thread(target=task)
        t.start()
        t_list.append(t)
    for t in t_list:
        t.join()
    print(money)

多进程与多线程比较

单核:多个任务(IO密集型/计算密集型)
多核: 多个任务(IO密集型/计算密集型)

  • 计算密集型使用多进程
  • IO密集型使用多线程
#计算密集型
from multiprocessing import Process
from threading import Thread
import time
import os

def work():
    res = 0
    for i in range(100000000):
        res *= i

if __name__ == '__main__':
    l = []
    print(os.cpu_count()) # 获取当前计算机CPU核心数
    start_time = time.time()
    for i in range(8):
        # p = Process(target=work) # 9.708976984024048
        t = Thread(target=work) # 38.72370767593384
        # p.start()
        t.start()
        # l.append(p)
        l.append(t)
    for p in l:
        p.join()
    print(time.time()-start_time)
# IO密集型
from multiprocessing import Process
from threading import Thread
import time
import os

def work():
    time.sleep(2)

if __name__ == '__main__':
    l = []
    print(os.cpu_count()) # 获取当前计算机CPU核心数
    start_time = time.time()
    for i in range(400):
        # p = Process(target=work) # 11.842133283615112
        t = Thread(target=work) # 2.0397207736968994
        # p.start()
        t.start()
        # l.append(p)
        l.append(t)
    for p in l:
        p.join()
    print(time.time()-start_time)
  • 多进程和多线程都有各自的优势
  • 通常都是多进程下面开设多线程

死锁与递归锁

死锁:整个程序卡死(阻塞)

死锁

from threading import Thread, Lock
import time

mutexA = Lock()
mutexB = Lock()

# 类只要加括号多次,产生的肯定是不同的对象
# 如果想实现多次加括号得到相同的对象,需要使用单例模式

class MyThead(Thread):
    def run(self):
        self.func1()
        self.func2()

    def func1(self):
        mutexA.acquire()
        print('%s 抢到A锁' %self.name) #获取当前线程名
        mutexB.acquire()
        print('%s 抢到B锁' %self.name)
        mutexB.release()
        mutexA.release()

    def func2(self):
        mutexB.acquire()
        print('%s 抢到B锁' % self.name)
        time.sleep(2)
        mutexA.acquire()
        print('%s 抢到A锁' % self.name)  # 获取当前线程名
        mutexA.release()
        mutexB.release()

if __name__ == '__main__':
    for i in range(10):
        t = MyThead()
        t.start()

递归锁

  • 可以被连续的acquireh和release
  • 但是只能被第一个抢到锁的线程执行此操作
  • 它内部有一个计数器, 每acquire一次计数器加一,每release一次计数器减一,只要计数不为零,其它线程都无法抢该锁
from threading import Thread, Lock, RLock
import time

# mutexA = Lock()
# mutexB = Lock()
mutexA = mutexB = RLock()

# 类只要加括号多次,产生的肯定是不同的对象
# 如果想实现多次加括号得到相同的对象,需要使用单例模式

class MyThead(Thread):
    def run(self):
        self.func1()
        self.func2()

    def func1(self):
        mutexA.acquire()
        print('%s 抢到A锁' %self.name) #获取当前线程名
        mutexB.acquire()
        print('%s 抢到B锁' %self.name)
        mutexB.release()
        mutexA.release()

    def func2(self):
        mutexB.acquire()
        print('%s 抢到B锁' % self.name)
        time.sleep(2)
        mutexA.acquire()
        print('%s 抢到A锁' % self.name)  # 获取当前线程名
        mutexA.release()
        mutexB.release()

if __name__ == '__main__':
    for i in range(10):
        t = MyThead()
        t.start()

信号量

信号量在不同的阶段对应不同的技术点
在并发编程中信号量指的是锁

from threading import Thread, Semaphore
import time
import random

sm = Semaphore(5) #括号内数字表示锁的数量

def task(name):
    sm.acquire()
    print('%s 正在蹲坑' %name)
    time.sleep(random.randint(1, 5))
    sm.release()

if __name__ == '__main__':
    for i in range(20):
        t = Thread(target=task,args=('伞兵%s号' %i, ))
        t.start()

event事件

一些进程/线程需要等待另外一些进程/线程运行完毕之后才能运行,类似于发射信号一样

from threading import Thread, Event
import time

event = Event()

def light():
    print('红灯亮着的')
    time.sleep(3)
    print('绿灯亮了')
    # 告诉等待红灯的人可以走了
    event.set()

def car(name):
    print('%s 车正在等红灯' %name)
    event.wait() # 等待别人发消息
    print('%s 车加油门走了' %name)

if __name__ == '__main__':
    t = Thread(target=light)
    t.start()
    for i in range(20):
        t = Thread(target=car, args=('%s' %i, ))
        t.start()

线程q

同一个进程下多个线程数据是共享的
队列是管道+锁 组成的
队列是为了保证数据的安全

队列q 先进先出

import queue

q = queue.Queue(3)
q.put(1)
q.get()
q.get_nowait()
q.get(timeout=3)
q.full()
q.empty()

后进先出q

import queue

q = queue.LifoQueue(3)
q.put(1)
q.put(2)
q.put(3)
print(q.get()) # 3

优先级q

可以给放入队列中的数据设置进出的优先级

import queue

q = queue.PriorityQueue(4)
q.put((10, '111')) # put括号内容放一个元祖 第一个数字表示优先级,数字越小,优先级越高
q.put((100, '222'))
q.put((0, '333'))
q.put((-5, '444'))
print(q.get()) # (-5, '444')

  • 不可能无限制的开设进程和线程,因为计算机硬件的资源有限
  • 保证计算机硬件能够正常工作的情况下最大限度使用
  • 池是用来保证计算机硬件安全的情况下最大限度的利用计算机,它降低了程序的运行效率,但是保证了计算机硬件的安全,从而让程序能够正常运行

线程池

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time

pool = ThreadPoolExecutor(5) # 固定只有5个线程,不会重复创建与销毁
# 括号内可以传数字,不传默认开设当前计算机cpu个数5倍的线程

def task(n):
    print(n)
    time.sleep(2)
    return n**n

# pool.submit(task, 1) # 向池中提交任务, 异步提交
# print('主')
t_list = []
for i in range(20):
    res = pool.submit(task, i)
    # print(res.result())
    t_list.append(res)

# 等待线程池中的所有的任务执行完毕之后再继续往下执行
pool.shutdown() # 关闭线程池,等待线程池中那个所有的任务运行完毕
for t in t_list:
    print('>>>', t.result())

进程池

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time
import os

# pool = ThreadPoolExecutor(5) # 固定只有5个线程,不会重复创建与销毁
# 括号内可以传数字,不传默认开设当前计算机cpu个数5倍的线程
pool = ProcessPoolExecutor(5)
# 括号内可以传数字,不传默认开设当前计算机cpu个数的进程
def task(n):
    print(n, os.getpid())
    time.sleep(2)
    return n**n

def call_back(n):
    print('call_back>>>:', n.result())

if __name__ == '__main__':
    # pool.submit(task, 1) # 向池中提交任务, 异步提交
    # print('主')
    t_list = []
    for i in range(20):
        # res = pool.submit(task, i)
        res = pool.submit(task, i).add_done_callback(call_back)
        # print(res.result())
        # t_list.append(res)

    # 等待线程池中的所有的任务执行完毕之后再继续往下执行
    # pool.shutdown() # 关闭线程池,等待线程池中那个所有的任务运行完毕
    # for t in t_list:
    #     print('>>>', t.result())

协程

  • 进程: 资源单位
  • 线程: 执行单位
  • 协程: 单线程下实现并发(在代码层面上检测所有的io操作,一旦遇到io,在代码级别完成切换,给CPU的感觉是程序一直运行,没有io,从而提升程序的运行效率)

多道技术: 切换+保存状态

cpu两种切换
1.程序遇到io
2.程序长时间占用

切换: 切换不一定是提升效率,也有可能是降低效率
io切 提升
没有io切 降低

保存状态: 保存上一次执行的状态, 下一次来接着上一次的操作继续往后执行

gevent模块

pip3 install gevent
from gevent import monkey;monkey.patch_all()
import time
from gevent import spawn

def heng():
    print('哼')
    time.sleep(2)
    print('哼')

def ha():
    print('哈')
    time.sleep(3)
    print('哈')

def heiheihei():
    print('heiheihei')
    time.sleep(5)
    print('heiheihei')

start_time = time.time()
g1 = spawn(heng)
g2 = spawn(ha)
g3 = spawn(heiheihei)
g1.join()
g2.join() # 等待被检测的任务执行完毕,再往后继续执行
g3.join()
# heng()
# ha()
print(time.time() - start_time)

协程实现TCP服务端并发

server

from gevent import monkey;monkey.patch_all()
import socket
from gevent import spawn

def communication(conn):
    while True:
        try:
            data = conn.recv(1024)
            if len(data) == 0:
                break
            conn.send(data.upper())
        except ConnectionResetError as e:
            print(e)
            break
    conn.close()


def server(ip, port):
    server = socket.socket()
    server.bind((ip, port))
    server.listen(5)
    while True:
        conn, addr = server.accept()
        spawn(communication, conn)

if __name__ == '__main__':
    g1 = spawn(server, '127.0.0.1', 8080)
    g1.join()

client

from threading import Thread, current_thread
import socket


def x_client():
    client = socket.socket()
    client.connect(('127.0.0.1', 8080))
    n = 0
    while True:
        msg = '%s say hello %s' %(current_thread().name, n)
        n += 1
        client.send(msg.encode('utf-8'))
        data = client.recv(1024)
        print(data.decode('utf-8'))


if __name__ == '__main__':
    for i in range(500):
        t = Thread(target=x_client)
        t.start()

多进程下面开设多线程
多线程下面开设协程

IO模型

  • blocking IO 阻塞IO
  • nonblocking IO 非阻塞IO
  • IO multiplexing IO多路复用
  • signal driven IO 信号驱动IO
  • asynchronous IO 异步IO

网络阻塞状态

  • accept
  • recv
  • recvfrom

阻塞IO模型

在这里插入图片描述

server

import socket

server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)

while True:
    conn, addr = server.accept()
    while True:
        try:
            data = conn.recv(1024)
            if len(data) == 0:
                break
            print(data)
            conn.send(data.upper())
        except ConnectionResetError as e:
            break
    conn.close()

client

import socket

client = socket.socket()
client.connect(('127.0.0.1', 8080))

while True:
    client.send(b'hello world')
    data = client.recv(1024)
    print(data)

非阻塞IO模型

在这里插入图片描述

提交之后无论是否有数据,都会立刻获得一个结果

server

import socket
import time

server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)
server.setblocking(False) # 将所有的网络阻塞变为非阻塞

r_list = []
del_list = []
while True:
    try:
        conn, addr = server.accept()
        r_list.append(conn)
    except BlockingIOError as e:
        # time.sleep(0.1)
        # print('列表的长度:', len(r_list))
        # print('做其他事')
        for conn in r_list:
            try:
                data = conn.recv(1024)
                if len(data) == 0: # 客户端断开连接
                    conn.close() # 关闭conn
                    # 将无用的conn从r_list删除
                    del_list.append(conn)
                    continue
                conn.send(data.upper())
            except BlockingIOError:
                continue
            except ConnectionResetError:
                conn.close()
                del_list.append(conn)
        # 回收无用的连接
        for conn in del_list:
            r_list.remove(conn)
        del_list.clear()

client

import socket

client = socket.socket()
client.connect(('127.0.0.1', 8080))

while True:
    client.send(b'hello world')
    data = client.recv(1024)
    print(data)

IO多路复用

在这里插入图片描述

监管机制

  • select机制 (windows Linux都有)
  • poll机制 (只在Linux有)poll监管的数量更多
  • epoll机制 (只在Linux有)它给每一个监管对象都绑定一个回调机制,一旦有响应,回调机制立刻发起提醒

selectors模块可以根据不同的操作系统选择相应的监管机制

server

import socket
import select


server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)
server.setblocking(False)
read_list = [server]


while True:
    r_list, w_list, x_list = select.select(read_list, [], []) # 检测server
    # print(r_list)
    for i in r_list:
        if i is server:
            conn, addr = i.accept()
            read_list.append(conn)
        else:
            res = i.recv(1024)
            if len(res) == 0:
                i.close()
                # 将无效的监管对象移除
                read_list.remove(i)
                continue
            print(res)
            i.send(b'heiheihei')

client

import socket

client = socket.socket()
client.connect(('127.0.0.1', 8080))

while True:
    client.send(b'hello world')
    data = client.recv(1024)
    print(data)

异步IO模型

在这里插入图片描述

相关模块和框架

  • asyncio模块
  • 异步框架 sanic tornado twisted
import threading
import asyncio

@asyncio.coroutine
def hello():
    print('hello world %s' %threading.current_thread())
    yield from asyncio.sleep(1) # 换成真正的io操作
    print('hello world %s' %threading.current_thread())

loop = asyncio.get_event_loop()
tasks = [hello(), hello()]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

在这里插入图片描述

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页