/*双向扫描代码
快排算法的思想就是每次以第一个元素为枢纽,把小于这个元素的值放在左边,大于这个元素的值放在右边,
从而把数组以此枢纽为界分为两部分,左边的要大于这个枢纽表示的值,右边的要小于这一个,然后再对左右两边分别排序。
直到达到要求为止。
下面这个程序具有平均运行时间T(n) = O(nlgn), 最差运行时间T(n) = O(n^2)
一般情况下并不采用这个排序方式,因为如果所有的元素都已经排好序后,这个算法的时间复杂度就是O(n^2)
O(n^2)的来源:对于数组中的每一位元素,都要与其后面的所有元素都进行比较。
*/
#include <iostream>
#include <algorithm>
#include <stdio.h>
using namespace std;
//交换对应位置的元素
void swap(int a[],int x,int y)
{
int temp;
temp = a[x];
a[x] = a[y];
a[y] = temp;
}
int partition(int a[],int low,int high)
{
//每次进行快速排序的时候都以最左边的元素作为枢纽,
int k = a[low];
while(low < high)
{
//从后往前遍历,使后面的元素都大于k
for( ; low < high && a[high] >= k ; high --);
swap(a,low,high);
//从前往后遍历,使前面的元素都小于k
for(; low < high && a[low] <= k; low ++);
swap(a,low,high);
}
//返回的是中间点(即左边元素小于它,右边元素大于它)
return low;
}
int num = 0;
//利用快速排序算法进行排序
void QuickSort(int a[],int low,int high)
{
if(low < high)
{
//调用一次快速排序,以枢纽元素为界划分两个子表
int k = partition(a,low,high);
//输出每一次排序以后的数组
printf("第%d次排序以后的序列 : ",++ num);
for(int i = 0;i < 8;i ++)
printf("%d ",a[i]);
printf("\n");
//对左边的子表进行排序
QuickSort(a,low , k - 1);
//对右边的子表进行排序
QuickSort(a,k + 1,high);
}
}
int main()
{
// freopen("out.txt","w",stdout);
int a[8] = {48,62,35,77,55,14,35,98};
QuickSort(a,0,7);
printf("所有元素都排序完后的序列\n");
for(int i = 0;i < 8;i ++)
printf("%d ",a[i]);
printf("\n");
return 0;
}
/*
排序以后的结果
//特殊颜色的部分就是每次排序的枢纽元素
第1次排序以后的序列 : 35 14 35 <span style="color:#ff6666;background-color: rgb(255, 255, 255);">48</span> 55 77 62 98
第2次排序以后的序列 : 14 35 <span style="color:#ff6666;background-color: rgb(255, 255, 255);">35</span> 48 55 77 62 98
第3次排序以后的序列 : 14 35 35 48 <span style="color:#ff6666;background-color: rgb(255, 255, 255);">55</span> 77 62 98
第4次排序以后的序列 : 14 35 35 48 55 62 <span style="background-color: rgb(255, 255, 255);">77</span> 98
所有元素都排序完后的序列
14 35 35 48 55 62 77 98
*/
/*
两个指针一前一后逐步向前扫描(单向扫描)
基于双向扫描的快速排序要比基于单向扫描的快速排序算法快很多
*/
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int N = 10005;
int Partion(int a[], int l, int r)
{
int i = l - 1;
int pivot = a[r];
for(int j = l; j < r; j++)
{
if(a[j] <= pivot)
{
i++;
swap(a[i], a[j]);
}
}
swap(a[i + 1], a[r]);
return i + 1;
}
void QuickSort(int a[], int l, int r)
{
if(l < r)
{
int k = Partion(a, l, r);
QuickSort(a, l, k - 1);
QuickSort(a, k + 1, r);
}
}
int a[N];
int main()
{
int n;
while(cin >> n)
{
for(int i = 0; i < n; i++)
cin >> a[i];
QuickSort(a, 0, n - 1);
for(int i = 0; i < n; i++)
cout << a[i] << " ";
cout << endl;
}
return 0;
}
/*
为了提高快速排序的效率,需要对快速排序进行优化
快速排序的四个优化方法:
1.三数取中法
保证每一次作为枢纽的元素不是数组元素中的最大值或者最小值,因为这样划分的时候只能划分为一个子表
应该尽量使作为枢纽的元素较靠近中间位置
三数:最前面选一个,最后面选一个,中间选一个。
具体代码如下
int m = low + (high - low) / 2;
if(a[low] < a[high]) swap(a,low,high);
if(a[m] > a[high]) swap(a,m,high);
if(a[m] > a[low]) swap(a,m,low);
2.优化掉不必要的交换,
上个代码中每一次比较的时候都要进行一次交换,大大降低了效率,所以此处尽量避免那些不必要的交换,
采用赋值的方式
3.优化小数组时的排序方法
待排序数组规模非常小的时候,直接使用插入排序。
因为直接插入排序是简单排序中性能最后的一种排序方法,数值7为插入排序效率最高的临界值
4.优化递归操作
在上一个代码中,每执行一次QuickSort都要进行两次递归调用,降低效率,采用尾递归的方式,进行优化
*/
#include <iostream>
#include <algorithm>
#include <stdio.h>
const int MAX = 7;
using namespace std;
//直接插入排序
void ISort(int a[],int n)
{
int i,j,temp;
for( i=1; i < n; i++) //循环从第2个元素开始
{
if(a[i]<a[i-1])
{
temp=a[i];
for(j=i-1; j>=0 && a[j]>temp; j--)
{
a[j+1]=a[j];
}
a[j+1]=temp;//此处就是a[j+1]=temp;
}
}
}
void InsertSort(int a[],int low,int high)
{
//在low位置到high - low + 1位置进行直接插入排序
ISort(a+low,high - low + 1);
}
//交换对应位置的元素
void swap(int a[],int x,int y)
{
int temp;
temp = a[x];
a[x] = a[y];
a[y] = temp;
}
int partition(int a[],int low,int high)
{
int m = low + (high - low) / 2;
if(a[low] < a[high]) swap(a,low,high);
if(a[m] > a[high]) swap(a,m,high);
if(a[m] > a[low]) swap(a,m,low);
//每次进行快速排序的时候都以最左边的元素作为枢纽,
int k = a[low];
while(low < high)
{
//从后往前遍历,使后面的元素都大于k
for( ; low < high && a[high] >= k ; high --);
//优化掉不必要的交换
a[low] = a[high];
//从前往后遍历,使前面的元素都小于k
for(; low < high && a[low] <= k; low ++);
a[high] = a[low];
}
a[low] = k;
//返回的是中间点(即左边元素小于它,右边元素大于它)
return low;
}
int num = 0;
//利用快速排序算法进行排序
void QuickSort(int a[],int low,int high)
{
if(high - low > MAX)
{
while(low < high)
{
//调用一次快速排序,以枢纽元素为界划分两个子表
int k = partition(a,low,high);
//对左边的子表进行排序
QuickSort(a,low , k - 1);
//采用尾递归的形式,减少递归调用的次数
//让low的值往后移动,然后执行while循环
//同样相等于执行了QuickSort(a,k + 1,high)
low = k + 1;
}
}
else
{
//调用直接插入排序
InsertSort(a,low,high);
}
}
int main()
{
// freopen("out.txt","w",stdout);
int a[13] = {48,62,35,77,55,14,38,98,56,49,33,100,70};
QuickSort(a,0,12);
printf("所有元素都排序完后的序列\n");
for(int i = 0; i < 12; i ++)
printf("%d ",a[i]);
printf("\n");
return 0;
}