1、引言
小屌丝:鱼哥,鱼哥,我要考考你
小鱼:你要考考我?
小屌丝:是的啊, 我要考你,
小鱼:你倒是说啊,要考什么啊
小屌丝:别着急,待我酝酿一下,
小鱼:… 咋的,吃多了,想酝酿?
小屌丝:… 我这必须饱腹诗书。
小鱼:拉倒吧,赶紧说吧,要考啥?
小屌丝:咳咳, Improof。
小鱼:这个…
小屌丝:嘿嘿, 不知道了吧。
小鱼:这个…
小屌丝:你要是不知道那我可以给你说一下。
小鱼:这个…
小屌丝:别这个那个的了, 我来说吧。
2、代码实战
2.1 定义
- lmproof是一个Python库,它提供了一些有用的自然语言处理工具,如语法检查、拼写检查等。
- 它使用了一些基于机器学习的技术,如神经网络和深度学习,来对文本进行处理,并提供了一些有用的功能,如语法检查、拼写检查、语义分析等。
- lmproof库使用起来非常简单,可以很方便地将文本转换为语言模型,并使用该模型进行各种自然语言处理任务。
2.2 常用语法
-
纠错:
- lmproof.correct(text): 对给定的文本进行纠错。
- lmproof.correct_batch(texts): 对一个文本列表进行批量纠错。
-
验证:
- lmproof.score(text): 对给定的文本进行得分评估。
- lmproof.score_batch(texts): 对一个文本列表进行批量得分评估。
-
自定义配置:
- lmproof.set_model(model_name): 设置要使用的语言模型,默认为 “bert-base-uncased”。
- lmproof.set_device(device): 设置使用的计算设备,默认为 “cpu”。
- lmproof.set_batch_size(batch_size): 设置批量处理的文本数量,默认为 1。
2.3 安装
因为第三方库, 所以,就需要安装。
老规矩, pip方式安装。
pip install improof
其余安装方式,可以参照这两篇:
安装完成后,我们就敲代码,看看improof的功能。
2.4 示例
# -*- coding:utf-8 -*-
# @Time : 2023-07-25
# @Author : Carl_DJ
'''
实现功能:
使用 IMproof进行校对自动化
'''
import lmproof
#定义proofread函数
def proofread(text):
proofread = lmproof.load("Carl_DJ")
correction = proofread.proofread(text)
print("原文件: {}".format(text))
print("校验文件: {}".format(correction))
proofread("文本")
3、总结
看到这里,今天的分享就结束了。
主要针对 lmproof库的常用方法进行了简单的介绍。
其实lmproof库的功能远不止这些,还有很多。
我就不逐一介绍了, 同时,也欢迎在评论区留下你对lmproof库的了解。
我是小鱼:
- CSDN 博客专家;
- 阿里云 专家博主;
- 51CTO博客专家;
- 51认证讲师等;
- 认证金牌面试官;
- 职场面试及培训规划师;
- 多个国内主流技术社区的认证专家博主;
- 多款主流产品(阿里云等)测评一、二等奖获得者;
关注我,带你学习更多更专业更前言的Python技术。