动态规划之四:路径问题(共四题)

第一题:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?

在这里插入图片描述
例如,上图是一个7 x 3 的网格。有多少可能的路径?
示例 1:
输入: m = 3, n = 2
输出: 3
解释:

从左上角开始,总共有 3 条路径可以到达右下角。
1.向右 -> 向右 -> 向下
2.向右 -> 向下 -> 向右
3.向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28

状态定义:dp[i][j] 多少种可能可以走到i,j。

状态转移方程:
dp[i][j] = dp[i-1][j] + dp[i][j-1]

def uniquePaths(m, n):
    dp = [[1]*m for i in range(n)]
    for i in range(1,n):
        for j in range(1,m):
            dp[i][j] = dp[i-1][j] + dp[i][j-1]
    return dp[-1][-1]

第二题:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

在这里插入图片描述
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1.向右 -> 向右 -> 向下 -> 向下
2.向下 -> 向下 -> 向右 -> 向右

状态定义:dp[i][j] 多少种可能可以走到i,j。

状态转移方程(伪代码)if obstacleGrid[i][j] == 1: dp[i][j] = 0
if i == 0: dp[i][j] = dp[i][j-1]
if j == 0: dp[i][j] = dp[i-1][j]
else: dp[i][j] = dp[i-1][j] + dp[i][j-1]

def uniquePathsWithObstacles( obstacleGrid ):
    h, w = len(obstacleGrid), len(obstacleGrid[0])
    if h == 0 or w == 0: return 0
    if obstacleGrid[0][0] == 1: return 0
    dp = [[-1]*w for i in range(h)]
    for i in range(h):
        for j in range(w):
            if i == 0 and j == 0: dp[i][j] = 1
            elif obstacleGrid[i][j] == 1: dp[i][j] = 0
            elif i == 0: dp[i][j] = dp[i][j-1]
            elif j == 0: dp[i][j] = dp[i-1][j]
            else: dp[i][j] = dp[i-1][j] + dp[i][j-1]
    return dp[-1][-1]

第三题:
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

状态定义:dp[i][j] 走到i,j的最小路径和。
画个图帮忙理解
在这里插入图片描述

状态定义:dp[i][j] 走到i,j的最小路径和。

def minPathSum(grid):
	h = len(grid)
	w = len(grid[0])
	dp = [[0]*w for i in range(h)]
	for i in range(h):
	    for j in range(w):
	        if i == 0 and j == 0:dp[i][j] = grid[i][j]
	        elif i == 0: dp[i][j] = dp[i][j-1] + grid[i][j]
	        elif j == 0: dp[i][j] = dp[i-1][j] + grid[i][j]
	        else: dp[i][j] = min(dp[i][j-1], dp[i-1][j]) + grid[i][j]
	return dp[-1][-1]

第四题:
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:

在这里插入图片描述
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

def minimumTotal(triangle):
	 h, w = len(triangle), len(triangle[-1])
	 dp = [ [0]*w for i in range(h) ]
	 for i in range(h):
	     for j in range(i+1):
	         if i == 0 and j == 0 : dp[i][j] = triangle[i][j]
	         elif j == 0 : dp[i][j] = dp[i-1][j] + triangle[i][j]
	         elif i == j : dp[i][j] = dp[i-1][j-1] + triangle[i][j]
	         elif i > j : dp[i][j] = min(dp[i-1][j], dp[i-1][j-1]) + triangle[i][j]
	 return min(dp[-1])
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值