The 15-th BIT Campus Programming Contest - Onsite Round

1.Just Multiplicative Inverse

这个题有两种做法,第二种做法比较好想,但是需要优化一下。
这里先说第一种做法(拉格朗日插值或者高斯消元)
首先题目给我们限定了F ( i ) F(i)F(i)的取值范围,对于每个F ( i ) F(i)F(i),至多有三种选择:
因此我们可以3 5 3^{5}3
5
枚举出F FF函数的值。
这样F FF函数定了,那现在问题就转换成了知道经过5 55个点的4 44次多项式,求出这个多项式的系数。
这个问题可以用拉格朗日差值法或者高斯消元解决。
具体算法解析请参考OIWiki。
注意一下精度问题就行了,因为我们是用拉格朗日算法构造出来一个多项式去拟合我们给的条件,所以会有精度误差。
第二种做法(比赛时想到的)
我们直接枚举高次的系数,即枚举a 4 , a 3 , a 2 a4,a3,a2a4,a3,a2。
根据这三个系数我们可以消除一些误差比较大的数据(优化)。

#include <bits/stdc++.h>
#define PI atan(1.0)*4
#define rp(i,s,t) for (register int i = (s); i <= (t); i++)
#define RP(i,t,s) for (register int i = (t); i >= (s); i--)
#define sc(x) scanf("%d",&x)
#define scl(x) scanf("%lld",&x)
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset(a,b,sizeof(a))
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define m_p make_pair
#define p_b push_back
#define ins insert
#define era erase
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f3f
#define dg if(debug)
#define pY puts("YES")
#define pN puts("NO")
#define outval(a) cout << "Debuging...|" << #a << ": " << a << "\n";
#define outval2(a,b) cout << "Debuging...|" << #a << ": " << a <<"\t"<< #b << ": " << b << "\n";
#define outval3(a,b,c) cout << "Debuging...|" << #a << ": " << a <<"\t"<< #b << ": " << b <<"\t"<< #c << ": " << c << "\n";
using namespace std;
int debug = 0;
ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}
ll lcm(ll a,ll b){
    return a/gcd(a,b)*b;
}
inline int read(){
    int s=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        s=s*10+ch-'0';
        ch=getchar();
    }
    return s*f;
}
const int maxn = 100;
const double eps = 1e-6;
ll f[10];
double a[10][10];
int n;
int gauss()
{
   int c, r; // c 是列数、r 是行数
   for(c = 0, r = 0; c < n; c++) //枚举每一列 
    {
        int t = r;
   	  for(int i=r; i<n; i++) // 找到第 c 列的值最大的是哪一行 
        if(fabs(a[i][c]) > fabs(a[t][c]))
        t = i;
   	  if(fabs(a[t][c]) < eps) continue; //当前这一列最大值都为 0,说明这一列所有系数都为0
	   for(int i=c; i<=n; i++) swap(a[t][i],a[r][i]); //把绝对值最大的这行(即第t行)换到当前最上面去(第r行)
	   for(int i=n; i>=c; i--) a[r][i] /= a[r][c]; //把第t行第一个数变成1(方程所有数同除第一个数即可)
	                                               //要先处理最后一个数,因为如果先处理第一个数,第一个数先变为1了,后面所有数就会都除1而不是第一个数
       for(int i =r+1; i<n; i++) //枚举从 r+1 的每一行,把第 c 列的数全部消成 0 
	      if(fabs(a[i][c]) > eps) //如果已经 ==0 ,就不用消了
		    for(int j=n; j>=c; j--) //枚举这一行的每个数 
			  a[i][j] -= a[r][j] * a[i][c]; //每个数减去a[i][c] * a[r][j] 即可 
		r++; //该下一行了										   	   
    }
   if(r < n) //说明剩下的方程数小于 n 个,需要判断是 无解 还是 有多组解 
   { //现在已经是阶梯型,所有系数都应该为0,如果等式右边a[i][n] != 0,说明无解 
    for(int i=r; i<n; i++)
        if(fabs(a[i][n]) > eps)
   	      return 2;  //无解
   	  return 1; //多组解,说明 r~n-1的这些方程是可以被 0~n 的某些方程表示出来的
    }
   //有唯一解,从下向上回代,依次求解 
   for(int i=n-1; i>=0; i--) //从下向上枚举每一行 
    for(int j=i+1; j<n; j++) 
       a[i][n] -= a[i][j] * a[j][n];
    return 0;
}
vector<ll> v;
int ff=0;
void dfs(vector<ll> v,ll num,int cnt){
    if(ff) return ;
    if(cnt==5){
        n=5;
        for(int i=0;i<n;i++){
            double base=1.0;
            for(int j=0;j<n;j++){
                a[i][j]=base;
                base=base*(i+1.0);
            }
        } 
        for(int i=0;i<n;i++) a[i][n]=v[i];
        gauss();
        int flag=0;
        rp(i,0,4){
            if(a[i][n]>100||a[i][n]<-100){
                flag=1;
                break;
            }
        } 
        // outval(flag);
        vector<ll> vv;
        rp(i,0,4) vv.push_back((ll)(a[i][n]));
        // for(auto val:vv) cout<<val<<" ";
        // cout<<endl;
        rp(i,1,5){
            ll ans=vv[0]+1ll*vv[1]*i+1ll*vv[2]*i*i+1ll*vv[3]*i*i*i+1ll*vv[4]*i*i*i*i;
            // outval3(i,ans,f[i]);
            if(abs(ans-f[i])>1){
                flag=1;
                break;
            }
        }
        if(!flag){
            ff=1;
            rp(i,0,4) cout<<vv[i]<<(i==4?'\n':' ');
            return ;
        } 
        // outval(flag);
        // cout<<"**********"<<endl;
        return ;
    }
    
    v.push_back(f[cnt+1]-1);
    dfs(v,f[cnt+1]-1,cnt+1);
    v.pop_back();

    v.push_back(f[cnt+1]+1);
    dfs(v,f[cnt+1]+1,cnt+1);
    v.pop_back();

    v.push_back(f[cnt+1]);
    dfs(v,f[cnt+1],cnt+1);
    v.pop_back();
}
void solve(){
    ff=0;
    rp(i,1,5) scl(f[i]);

    v.push_back(f[1]-1);
    dfs(v,f[1]-1,1);
    v.pop_back();

    v.push_back(f[1]+1);
    dfs(v,f[1]+1,1);
    v.pop_back();

    v.push_back(f[1]);
    dfs(v,f[1],1);
    v.pop_back();
}
int main(){
    //ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#ifdef ONLINE_JUDGE
#else
    freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // debug = 1;
#endif
    time_t beg, end;
    if(debug) beg = clock();

    int T=read();
    while(T--) solve();

    if(debug) {
        end = clock();
        printf("time:%.2fs\n", 1.0 * (end - beg) / CLOCKS_PER_SEC);
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值