NOI:1996 登山

题目链接:http://noi.openjudge.cn/ch0206/1996/


题解:动态规划,两段最长上升序列,0-k以k结尾的最长上升序列和k-n以k为起点的上升序列两端和最大

         掌握最长上升子序列的求法,即以ak为终点的最长上升子序列

注意:题目中说一旦下山就不能再上山,所以要分成上山和下山两部分

#include <stdio.h>
#include <iostream>
#include <iterator>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;
int a[1005],b[1005],c[1005];
int n;
int set(int position)//最长上升子序列的求法,以position为终点的最长上升子序列
{
    if(b[position]!=0)return b[position];
    int tmp=0;
    for(int i=0;i<position;i++){
        if(a[i]<a[position]){
            tmp=max(tmp,set(i));
        }
    }
    if(tmp==0){
        b[position]=1;
        return 1;
    }else{
        b[position]=tmp+1;
        return tmp+1;
    }
}
int set2(int position)//反过来的最长上升子序列,从k-n的最长上升子序列
{
    if(c[position]!=0)return c[position];
    int tmp=0;
    for(int i=position+1;i<n;i++){
        if(a[i]<a[position]){
            tmp=max(tmp,set2(i));
        }
    }
    if(tmp==0){
        c[position]=1;
        return 1;
    }else{
        c[position]=tmp+1;
        return tmp+1;
    }
}
int main(){
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a[i];
        b[i]=0;
        c[i]=0;
    }
    int tmp=0;
    for(int i=0;i<n;i++){
        tmp=max(tmp,set(i)+set2(i)-1);//两段
    }
    cout<<tmp<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值