题目链接:http://noi.openjudge.cn/ch0206/1996/
题解:动态规划,两段最长上升序列,0-k以k结尾的最长上升序列和k-n以k为起点的上升序列两端和最大
掌握最长上升子序列的求法,即以ak为终点的最长上升子序列
注意:题目中说一旦下山就不能再上山,所以要分成上山和下山两部分
#include <stdio.h>
#include <iostream>
#include <iterator>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;
int a[1005],b[1005],c[1005];
int n;
int set(int position)//最长上升子序列的求法,以position为终点的最长上升子序列
{
if(b[position]!=0)return b[position];
int tmp=0;
for(int i=0;i<position;i++){
if(a[i]<a[position]){
tmp=max(tmp,set(i));
}
}
if(tmp==0){
b[position]=1;
return 1;
}else{
b[position]=tmp+1;
return tmp+1;
}
}
int set2(int position)//反过来的最长上升子序列,从k-n的最长上升子序列
{
if(c[position]!=0)return c[position];
int tmp=0;
for(int i=position+1;i<n;i++){
if(a[i]<a[position]){
tmp=max(tmp,set2(i));
}
}
if(tmp==0){
c[position]=1;
return 1;
}else{
c[position]=tmp+1;
return tmp+1;
}
}
int main(){
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
b[i]=0;
c[i]=0;
}
int tmp=0;
for(int i=0;i<n;i++){
tmp=max(tmp,set(i)+set2(i)-1);//两段
}
cout<<tmp<<endl;
}