系统学习Pytorch笔记五:nn的网络层介绍(卷积层,池化层,激活函数,全连接层等)

本文是Pytorch学习系列的第五篇,主要介绍了卷积层(1/2/3维卷积、nn.Conv2d和转置卷积)、池化层、激活函数层和全连接层。通过动图辅助理解,详细解释了卷积核的工作原理、池化的概念,以及线性和非线性激活函数的作用。此外,还讨论了不同卷积核如何提取不同特征,并展示了Pytorch中卷积层和转置卷积层的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch官方英文文档:https://pytorch.org/docs/stable/torch.html?
Pytorch中文文档:https://pytorch-cn.readthedocs.io/zh/latest/

1. 写在前面

疫情在家的这段时间,想系统的学习一遍Pytorch基础知识,因为我发现虽然直接Pytorch实战上手比较快,但是关于一些内部的原理知识其实并不是太懂,这样学习起来感觉很不踏实, 对Pytorch的使用依然是模模糊糊, 跟着人家的代码用Pytorch玩神经网络还行,也能读懂,但自己亲手做的时候,直接无从下手,啥也想不起来, 我觉得我这种情况就不是对于某个程序练得不熟了,而是对Pytorch本身在自己的脑海根本没有形成一个概念框架,不知道它内部运行原理和逻辑,所以自己写的时候没法形成一个代码逻辑,就无从下手。 这种情况即使背过人家这个程序,那也只是某个程序而已,不能说会Pytorch, 并且这种背程序的思想本身就很可怕, 所以我还是习惯学习知识先有框架(至少先

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值