让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
这个题思路: 关键就是找素数,输入一个整数,找2-N之间的素数放到一个数组中,然后遍历那个数组,
如果后一个数减去前一个数差为2,说明是一对。
#include <iostream>
#include <cmath>
using namespace std;
{
if (k <= 1)
return 0;
int m = sqrt(floor(k) + 0.5);
for (int j = 2; j <= m; j++)
if (k%j == 0)
return 0;
return 1;
}
int main()
{
int num;
cin >> num;
int i;
int b[Max];
b[0] = 2;
int m = 1;
int count=0;
for (i = 3; i <= num; i++)
{
if (Is_Prime(i))
b[m++] = i;
}
for (i = 2; i < m; i++)
{
if (b[i] - b[i-1] == 2)
count++;
}
cout << count;
return 0;
}
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
这个题思路: 关键就是找素数,输入一个整数,找2-N之间的素数放到一个数组中,然后遍历那个数组,
如果后一个数减去前一个数差为2,说明是一对。
#include <iostream>
#include <cmath>
using namespace std;
const int Max = 100000;
//判断素数基本算法
int Is_Prime(int k){
if (k <= 1)
return 0;
int m = sqrt(floor(k) + 0.5);
for (int j = 2; j <= m; j++)
if (k%j == 0)
return 0;
return 1;
}
int main()
{
int num;
cin >> num;
int i;
int b[Max];
b[0] = 2;
int m = 1;
int count=0;
for (i = 3; i <= num; i++)
{
if (Is_Prime(i))
b[m++] = i;
}
for (i = 2; i < m; i++)
{
if (b[i] - b[i-1] == 2)
count++;
}
cout << count;
return 0;
}