题意:
给出一个有权无向图;
求1到n的路径上的最大异或和;
n<=50000,边权<=10^18;
题解:
由于异或的性质,我们可以知道对于任意一条连通图上的路径的异或和;
都可以由另外一条路径异或若干个环的异或和得来;
因为它们起点和终点都分别是1和n,那么这两个路本身就构成了一个可能经过相同边的环;
而更加显然的是,一个这样的非简单环是可以由若干个简单环组成的;
那么异或了这些简单环之后得到了这个非简单环的异或和,再将原来的路径异或上去抵消掉,就是答案了;
所以处理出所有的简单环,和图中任意一条路径的异或和;
然后答案就是任选几个简单环,它们与路径的最大异或和就是答案;
这里用高斯消元来搞就可以了;
时间复杂度 预处理O(n),高斯消元O(60*环的个数);
环不会太多,大概开到了边数就够了;
代码:
#include<vector>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 55000
#define M 60
using namespace std;
typedef unsigned long long ll;
vector<int>to[N];
vector<ll>val[N];
int t[N],tot,n;
ll dis[N],a[N<<1],temp;
bool vis[N];
void dfs(int x,ll len)
{
vis[x]=1;
if(x==n) temp=len;
int i,y;
for(i=0;i<to[x].size();i++)
{
if(!vis[y=to[x][i]])
{
dis[y]=len^val[x][i];
dfs(y,dis[y]);
}
else
{
if(dis[y]^dis[x]^val[x][i]&&x>y)
a[++tot]=dis[y]^dis[x]^val[x][i];
}
}
}
int main()
{
int m,i,j,k,x,y;
ll v,t;
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d%llu",&x,&y,&v);
to[x].push_back(y),val[x].push_back(v);
to[y].push_back(x),val[y].push_back(v);
}
dfs(1,0);
for(i=M,k=0;i>=0;i--)
{
for(j=k+1,x=0;j<=tot;j++)
if((1ll<<i)&a[j])
{
x=j;
break;
}
if(!x) continue;
else swap(a[++k],a[x]);
for(j=1;j<=tot;j++)
{
if(k==j) continue;
if((1ll<<i)&a[j])
a[j]^=a[k];
}
}
for(i=1;i<=tot;i++)
if((temp^a[i])>temp)
temp^=a[i];
printf("%llu",temp);
return 0;
}