bzoj-1137 Wsp 岛屿

141 篇文章 0 订阅
75 篇文章 0 订阅

题意:

给出一个凸多边形,顶点顺时针标为1到n,每两个点之间有一条道路;

道路的权值为两点欧几里得距离,可以通过道路的交点直接切换道路;

有的边不能直接通过,但是可以通过这条边到没被监视的相交的边;

求1到n的最短路;

n<=10^5,m<=10^6;

注:此题似乎叫WYS。。大概是BZ标错了吧;


题解:

Poi2009~

题中有一个重要信息就是顶点为顺时针给出;

那么1与n是相邻的顶点(当然正常人都会把1->n切掉)

边数为n^2级别,什么算法都承受不了,那一定有边不会最优;

观察发现对于每个点来说,只可能选择与能其所连的编号最大点的边;

这就是n条边了,再抽象一下模型,这似乎就是一个半平面交;

于是套用算法即可,时间复杂度O(nlogn);

为了方便,我将n->1的边加入半平面交然后直接上模板了。。

之后直接求核的周长,减个dis(1,n)就好;


代码:


#include<math.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 131072
#define pr pair<int,int>
using namespace std;
const double EPS=1e-8;
const double INF=1e100;
struct Point
{
	double x,y;
	Point(){}
	Point(double _,double __):x(_),y(__){}
	void read()
	{
		scanf("%lf%lf",&x,&y);
	}
	friend Point operator +(Point a,Point b)
	{
		return Point(a.x+b.x,a.y+b.y);
	}
	friend Point operator -(Point a,Point b)
	{
		return Point(a.x-b.x,a.y-b.y);
	}
	friend Point operator *(double a,Point b)
	{
		return Point(a*b.x,a*b.y);
	}
	friend double operator ^(Point a,Point b)
	{
		return a.x*b.y-a.y*b.x;
	}
	friend double dis(Point a,Point b)
	{
		return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
	}
}a[N],p[N];
struct Line
{
	Point p,v;
	double alpha;
	Line(){}
	Line(Point _,Point __){p=_,v=__-_;alpha=atan2(v.y,v.x);}
	friend bool operator <(Line a,Line b)
	{
		return a.alpha<b.alpha;
	}
	friend Point getP(Line a,Line b)
	{
		Point u=a.p-b.p;
		double temp=(b.v^u)/(a.v^b.v);
		return a.p+temp*a.v;
	}
	friend bool Onleft(Line a,Point b)
	{
		return (a.v^b-a.p)>0;
	}
}l[N],q[N];
int st,en;
pr E[N*10];
int main()
{
	int n,m,i,j,k,to,cnt;
	double ans;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++)
		a[i].read();
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&E[i].first,&E[i].second);
		if(E[i].first>E[i].second)
			swap(E[i].first,E[i].second);
	}
	sort(E+1,E+m+1);
	for(i=1,j=1,cnt=0;i<n;i++)
	{
		while(i==E[j+1].first)
			j++;
		if(i==E[j].first)
		{
			to=n,k=j;
			while(E[k].second==to&&E[k].first==i)
				k--,to--;
			if(to>i)
				l[++cnt]=Line(a[to],a[i]);
		}
		else
			l[++cnt]=Line(a[n],a[i]);
	}
	l[++cnt]=Line(a[1],a[n]);
	sort(l+1,l+cnt+1);
	q[st=en=1]=l[1];
	for(i=2;i<=cnt;i++)
	{
		while(st<en&&!Onleft(l[i],p[en]))
			en--;
		while(st<en&&!Onleft(l[i],p[st+1]))
			st++;
		if(fabs(q[en].alpha-l[i].alpha)<EPS)
			q[en]=Onleft(l[i],q[en].p)?q[en]:l[i];
		else
			q[++en]=l[i];
		p[en]=getP(q[en-1],q[en]);
	}
	while(st<en&&!Onleft(q[st],p[en]))
		en--;
	p[st]=getP(q[st],q[en]);
	for(i=st,ans=0;i<en;i++)
	{
		ans+=dis(p[i],p[i+1]);
	}
	ans+=dis(p[en],p[st])-dis(a[1],a[n]);
	printf("%lf",ans);
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值