题意:
给出一个凸多边形,顶点顺时针标为1到n,每两个点之间有一条道路;
道路的权值为两点欧几里得距离,可以通过道路的交点直接切换道路;
有的边不能直接通过,但是可以通过这条边到没被监视的相交的边;
求1到n的最短路;
n<=10^5,m<=10^6;
注:此题似乎叫WYS。。大概是BZ标错了吧;
题解:
Poi2009~
题中有一个重要信息就是顶点为顺时针给出;
那么1与n是相邻的顶点(当然正常人都会把1->n切掉);
边数为n^2级别,什么算法都承受不了,那一定有边不会最优;
观察发现对于每个点来说,只可能选择与能其所连的编号最大点的边;
这就是n条边了,再抽象一下模型,这似乎就是一个半平面交;
于是套用算法即可,时间复杂度O(nlogn);
为了方便,我将n->1的边加入半平面交然后直接上模板了。。
之后直接求核的周长,减个dis(1,n)就好;
代码:
#include<math.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 131072
#define pr pair<int,int>
using namespace std;
const double EPS=1e-8;
const double INF=1e100;
struct Point
{
double x,y;
Point(){}
Point(double _,double __):x(_),y(__){}
void read()
{
scanf("%lf%lf",&x,&y);
}
friend Point operator +(Point a,Point b)
{
return Point(a.x+b.x,a.y+b.y);
}
friend Point operator -(Point a,Point b)
{
return Point(a.x-b.x,a.y-b.y);
}
friend Point operator *(double a,Point b)
{
return Point(a*b.x,a*b.y);
}
friend double operator ^(Point a,Point b)
{
return a.x*b.y-a.y*b.x;
}
friend double dis(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
}a[N],p[N];
struct Line
{
Point p,v;
double alpha;
Line(){}
Line(Point _,Point __){p=_,v=__-_;alpha=atan2(v.y,v.x);}
friend bool operator <(Line a,Line b)
{
return a.alpha<b.alpha;
}
friend Point getP(Line a,Line b)
{
Point u=a.p-b.p;
double temp=(b.v^u)/(a.v^b.v);
return a.p+temp*a.v;
}
friend bool Onleft(Line a,Point b)
{
return (a.v^b-a.p)>0;
}
}l[N],q[N];
int st,en;
pr E[N*10];
int main()
{
int n,m,i,j,k,to,cnt;
double ans;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
a[i].read();
for(i=1;i<=m;i++)
{
scanf("%d%d",&E[i].first,&E[i].second);
if(E[i].first>E[i].second)
swap(E[i].first,E[i].second);
}
sort(E+1,E+m+1);
for(i=1,j=1,cnt=0;i<n;i++)
{
while(i==E[j+1].first)
j++;
if(i==E[j].first)
{
to=n,k=j;
while(E[k].second==to&&E[k].first==i)
k--,to--;
if(to>i)
l[++cnt]=Line(a[to],a[i]);
}
else
l[++cnt]=Line(a[n],a[i]);
}
l[++cnt]=Line(a[1],a[n]);
sort(l+1,l+cnt+1);
q[st=en=1]=l[1];
for(i=2;i<=cnt;i++)
{
while(st<en&&!Onleft(l[i],p[en]))
en--;
while(st<en&&!Onleft(l[i],p[st+1]))
st++;
if(fabs(q[en].alpha-l[i].alpha)<EPS)
q[en]=Onleft(l[i],q[en].p)?q[en]:l[i];
else
q[++en]=l[i];
p[en]=getP(q[en-1],q[en]);
}
while(st<en&&!Onleft(q[st],p[en]))
en--;
p[st]=getP(q[st],q[en]);
for(i=st,ans=0;i<en;i++)
{
ans+=dis(p[i],p[i+1]);
}
ans+=dis(p[en],p[st])-dis(a[1],a[n]);
printf("%lf",ans);
return 0;
}