题意:
给出一个长度为n的序列A,和m个序列Bi;
求每个Bi是否为A的子序列;
1<=n<=1000000,Bi总长度<=1000000;
题解:
这题听起来是sb题但是算法还是挺有趣。。
(给自己不会找个借口)
一个个判B串是否满足显然是T的,因为每次都要遍历A;
所以考虑仅遍历一次A串;
将所有B串存成链表的形式,插在Bi首字母的链表头里;
然后枚举A串,扫一遍当前的A[i],对所有B串去掉头(smg)之后放到下一个链表头里;
如果这时Bi为空则标记此串为TAK,否则为NIE;
时间复杂度为O(n+∑len(B));
这玩意感觉不太好调啊。。而且读入加不加优化简直两个世界[喷水];
代码:
#include<cctype>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 1100000
#define LEN 1<<16
using namespace std;
int a[N],b[N];
int val[N<<1],next[N<<1],_next[N<<1],head[N],tot;
int ans[N];
char getc()
{
static char *S,*T,buf[LEN];
if(S==T)
{
T=(S=buf)+fread(buf,1,LEN,stdin);
if(S==T)
return EOF;
}
return *S++;
}
int read()
{
static char ch;
static int D;
while(!isdigit(ch=getc()));
for(D=ch-'0';isdigit(ch=getc());)
D=D*10+ch-'0';
return D;
}
int main()
{
int n,m,i,j,k,x,y;
n=read();
for(i=1;i<=n;i++)
a[i]=read();
m=read();
for(i=1;i<=m;i++)
{
k=read();
for(j=1;j<=k;j++)
val[tot+j]=read(),next[tot+j]=tot+j+1;
_next[tot+1]=head[val[tot+1]];
head[val[tot+1]]=tot+1;
val[tot+k+1]=i;
tot+=k+1;
}
for(i=1;i<=n;i++)
{
for(x=head[a[i]],head[a[i]]=0;x;x=_next[x])
{
if(!next[next[x]])
{
ans[val[next[x]]]=1;
continue;
}
_next[next[x]]=head[val[next[x]]];
head[val[next[x]]]=next[x];
}
}
for(i=1;i<=m;i++)
if(ans[i])
puts("TAK");
else
puts("NIE");
return 0;
}