17、使用Shell脚本开发CGI程序的全面指南

使用Shell脚本开发CGI程序的全面指南

1. 为何使用Shell脚本支持CGI

CGI(Common Gateway Interface)可以使用多种工具编写,包括Korn和C shell脚本、Perl,甚至是C或C++等编译型语言。选择或避免特定工具都有诸多原因。许多人不赞成使用Shell脚本语言编写CGI脚本,原因主要有以下几点:
- 编程能力有限 :Shell脚本语言的编程能力相对受限。
- 服务器负载大 :Shell脚本是解释型的,执行许多功能时必须调用其他进程,这会给服务器系统带来较大负载。
- 安全问题 :使用Shell脚本编写的CGI脚本很容易出现安全问题。CGI脚本运行时就像你登录到服务器并交互式地执行脚本一样。如果脚本编写不当,无法防止意外访问,外部人员就可能在你的账户内执行命令。

不过,使用Shell脚本编写CGI也有显著优势:
- 开发速度快 :开发速度快,调试相对容易。
- 可移植性强 :Shell脚本通常可移植到任何运行UNIX的服务器上,大多数UNIX平台都支持Korn和C shell的版本。
- 技术人员熟悉 :大多数UNIX技术专业人员已经掌握了编写Shell脚本的技能。
- 特定要求 :互联网服务提供商(ISP)或服务器管理员可能会有此要求。

2. 安全和数据并发问题

2.1 安全问题

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值