一、问题分析
这道题目虽然是简单题,不过这有点像是脑筋急转弯,一不小心就会掉进坑里。如果按照常规思维,这道问题就只能枚举了,可是最终枚举的效果却是时间超时。
但只要稍加思考此问题便能发现,既然是k个子序列,那么这k个子序列必然是这序列里的任意组合,那么可想而知一定存在着k个组合,而这k个组合分别是这个数组中前k大的数。那么问题就直接转换成求数组中前k个大的数了。
第一种超时办法:
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var maxSubsequence = function(nums, k) {
let point_k = [];
let max_result = -99999;
let result = [];
for(let j = 0; j < k; j++) {
point_k.push(j);
}
while(point_k[0] <= nums.length - k)
{
let res = 0;
let start = k - 1;
for(let u = point_k.length - 1; u >= 0; u--) {
if(point_k[u] > nums.length - (k - u)) {
if(u <= 0) {
break;
}
point_k[u-1]++;
for(let f = u; f < k; f++) {
point_k[f] = point_k[u-1] + f- u + 1;
}
} else {
start = u;
break;
}
}
for(let f = start+1; f < k; f++) {
point_k[f] = point_k[f] + f-start;
}
for(let n = 0; n < k; n++) {
res += nums[point_k[n]];
}
if(res > max_result) {
max_result = res;
result = JSON.parse(JSON.stringify(point_k));
}
point_k[k-1]++;
}
let seq = [];
for(let n = 0; n < result.length; n++) {
seq.push(nums[result[n]]);
}
return seq;
};
第二种通过:
/**
* @param {number[]} nums
* @param {number} k
* @return {number[]}
*/
var maxSubsequence = function(nums, k) {
let tmp_nums = JSON.parse(JSON.stringify(nums));
let s = nums.sort((a,b)=>{ return a - b;});
let seq = [];
let no = [];
for(let i = s.length - 1; i >= s.length - k;i--) {
seq.push(s[i]);
}
let rem = [];
for(let j = 0; j < seq.length; j++) {
rem[seq[j]] = tmp_nums.indexOf(seq[j],rem[seq[j]] + 1 || 0);
no.push(rem[seq[j]]);
}
let sort_no = no.sort((a,b)=>{ return a - b;});
seq = [];
for(let n = 0; n < sort_no.length; n++) {
seq.push(tmp_nums[sort_no[n]]);
}
return seq;
};
三、总结
有些时候看问题不能想当然,还是要经过思考,就像谈恋爱一样,要仔细谨慎思考合不合适再做决定。