哆啦 A 梦有一个神奇的道具:时光机。坐着它,大雄和他的伙伴们能穿越时空,回到过去或者去到未来。
有一天,大雄和他的伙伴们想穿越时空进行探险,可是时光机却出了一点故障,只能进行有限的时空穿越操作。大雄他们需要从现在出发,到达一个目标时间点进行探险,结束后再返回到现在,他们希望尽可能减少时光机的操作次数,你能帮助他们吗?
假设大雄和他的伙伴们出发的时间点(现在)为 S(0 < S < 1,000,000)S(0<S<1,000,000),希望到达的时间点(目标)为 T(0 < T < 1,000,000)T(0<T<1,000,000),已知时光机可以进行如下的时空穿越操作(XX 为正整数):
可以从任意时刻 XX 穿越到 X+1X+1 或者 X-1X−1 时刻
可以从任意时刻 XX 穿越到 X \times 2X×2 时刻
当 XX 为偶数时,可以从 XX 时刻穿越到 X/2X/2 时刻
请问,大雄和他的伙伴们从 SS 时刻出发,先到达 TT 时刻,再回到 SS 时刻最少需要多少次时空穿越操作?
输入格式
输入的第一个数是一个正整数 NN,表示测试数据一共有 NN 组(0 < N < 200<N<20)。之后有 NN 行,每一行包含两个正整数 SS 和 TT,表示出发和到达时间点。S \not = TS=T
输出格式
输出包括 NN 行,每一行一个正整数,表示每组测试数据对应的最少时光机操作次数。
#include<cstdio>
#include<cstring>
#define Max 1000000
int vis[Max+1];
int qu[Max+1],pre[Max+1];
int s,t;
int next;
void print(int x) {
int num=0;
while(pre[x])
{
num++;
x=pre[x];
}
printf("%d\n",num*2);
}
void bfs() {
if(s==t){printf("0");return;}
int head=0,tail=1;
qu[1]=s;
vis[s]=1;
while(head!=tail)
{
head++;
for(int i=0;i<4;i++)
{
if(i==0) next=qu[head]+1;
if(i==1) next=qu[head]-1;
if(i==2) next=qu[head]*2;
if(i==3&&qu[head]%2==0) next=qu[head]/2;
if(next>=0&&next<=Max&&vis[next]==0)
{
tail++;
qu[tail]=next;
vis[next]=1;
pre[tail]=head;
if(next==t)
{
print(tail);
head=tail;
break;
}
}
}
}
}
int main()
{
freopen("dora.in","r",stdin);
freopen("dora.out","w",stdout);
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d%d",&s,&t);
bfs();
memset(vis,0,sizeof(vis));
memset(qu,0,sizeof(qu));
memset(pre,0,sizeof(pre));
next=0;
}
}