B. Neighbor Grid

outputstandard output
You are given a grid with n rows and m columns, where each cell has a non-negative integer written on it. We say the grid is good if for each cell the following condition holds: if it has a number k>0 written on it, then exactly k of its neighboring cells have a number greater than 0 written on them. Note that if the number in the cell is 0, there is no such restriction on neighboring cells.

You are allowed to take any number in the grid and increase it by 1. You may apply this operation as many times as you want, to any numbers you want. Perform some operations (possibly zero) to make the grid good, or say that it is impossible. If there are multiple possible answers, you may find any of them.

Two cells are considered to be neighboring if they have a common edge.

Input
The input consists of multiple test cases. The first line contains an integer t (1≤t≤5000) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers n and m (2≤n,m≤300) — the number of rows and columns, respectively.

The following n lines contain m integers each, the j-th element in the i-th line ai,j is the number written in the j-th cell of the i-th row (0≤ai,j≤109).

It is guaranteed that the sum of n⋅m over all test cases does not exceed 105.

Output
If it is impossible to obtain a good grid, print a single line containing “NO”.

Otherwise, print a single line containing “YES”, followed by n lines each containing m integers, which describe the final state of the grid. This final grid should be obtainable from the initial one by applying some operations (possibly zero).

If there are multiple possible answers, you may print any of them.
题目的大意是给出一个二维数组,其中里面的元素>0,表示与这个元素相邻的元素大于0的个数,要求不全这个二维数组。
思路:暴力枚举每一个大于0的元素,判断它是否大于4,如果大于了就不符合,因为一个元素最多就四个角与自己相邻。找到一个大于0的元素,判断四周,统计一下,四个方向0的个数,和非0的个数,如果0和非0的个数总和小于这个元素的值,也是不符合题意的,然后这个元素的四周放上1,知道放上去1的个数和原来非0的个数之和等于这个元素值是,就退出。最后为了防止边边角角新增添的1而漏加的,总的进行一次操作。
代码:

#include<bits/stdc++.h>
using namespace std;
const int N=310;
int a[N][N];
int t,n,m;
int dx[4]={-1,0,1,0},dy[4]={0,1,0,-1};
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        memset(a,0,sizeof a);
        scanf("%d%d",&n,&m);
        int f=0;
        for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        scanf("%d",&a[i][j]);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
        {
            if(a[i][j]>4){
                f=1;break;
            }
            else if(a[i][j]>0){
                int l=0,r=0;
                for(int k=0;k<4;k++)
                {
                    int x=i+dx[k],y=j+dy[k];
                    if(x>=1&&x<=n&&y>=1&&y<=m)
                    {
                        if(a[x][y]>0)l++;
                        else r++;
                    }
 
                }   
                if(a[i][j]<=l)a[i][j]=l;//四周的非0元素的个数大于这个数的,则更新
                else if(a[i][j]>l+r){
                        f=1;break;
                    }
 
                else if(a[i][j]>l){
                    int s=a[i][j];
                    for(int k=0;k<4;k++)
                    {
                        int x=i+dx[k],y=j+dy[k];
                        if(x>=1&&x<=n&&y>=1&&y<=m)
                        {
                            if(a[x][y]==0){
                                a[x][y]=1;
                            }
                           s--;
                        }
                        //元素等于新增添的1的个数和原来非0的个数时,就完成操作,退出
                        if(s==0)break;
                    }
                }
            }
            if(f==1)break;
 
        }
        if(f==1)break;
        }
        if(f){
            printf("NO\n");continue;
        }
        printf("YES\n");
                //防止某个元素漏加的,就进行总的查询,保证没有任何漏加的元素
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(a[i][j]>0){
                    int l=0;
                    for(int k=0;k<4;k++)
                    {
 
                        int x=i+dx[k],y=j+dy[k];
                        if(x>=1&&x<=n&&y>=1&&y<=m)
                        {
                            if(a[x][y]>0)l++;
                        }
 
                    }
                    a[i][j]=l;
                }
                printf("%d ",a[i][j]);
            }
 
            printf("\n");
        }
    }
    return 0;
}

B星寻路算法(B* Pathfinding Algorithm)是对A*寻路算法的一种改进,它可以在运行中重新规划路径,以适应场景中动态的障碍物。下面是一个基于Unity的B星寻路算法的示例代码: ```csharp using System.Collections.Generic; using UnityEngine; public class BStarPathfinding : MonoBehaviour { private Grid grid; private List<Node> openSet; private List<Node> closedSet; private void Awake() { grid = GetComponent<Grid>(); } public List<Node> FindPath(Vector3 startPos, Vector3 targetPos) { Node startNode = grid.NodeFromWorldPoint(startPos); Node targetNode = grid.NodeFromWorldPoint(targetPos); openSet = new List<Node> { startNode }; closedSet = new List<Node>(); startNode.gCost = 0; startNode.hCost = Heuristic(startNode, targetNode); while (openSet.Count > 0) { Node currentNode = GetLowestFCostNode(openSet); openSet.Remove(currentNode); closedSet.Add(currentNode); if (currentNode == targetNode) { return RetracePath(startNode, targetNode); } foreach (Node neighbor in grid.GetNeighbors(currentNode)) { if (closedSet.Contains(neighbor)) { continue; } float newMovementCostToNeighbor = currentNode.gCost + Heuristic(currentNode, neighbor); if (newMovementCostToNeighbor < neighbor.gCost || !openSet.Contains(neighbor)) { neighbor.gCost = newMovementCostToNeighbor; neighbor.hCost = Heuristic(neighbor, targetNode); neighbor.parent = currentNode; if (!openSet.Contains(neighbor)) { openSet.Add(neighbor); } } } } return null; } private List<Node> RetracePath(Node startNode, Node endNode) { List<Node> path = new List<Node>(); Node currentNode = endNode; while (currentNode != startNode) { path.Add(currentNode); currentNode = currentNode.parent; } path.Reverse(); return path; } private Node GetLowestFCostNode(List<Node> nodeList) { Node lowestNode = nodeList[0]; for (int i = 1; i < nodeList.Count; i++) { if (nodeList[i].fCost < lowestNode.fCost) { lowestNode = nodeList[i]; } } return lowestNode; } private float Heuristic(Node nodeA, Node nodeB) { return Vector3.Distance(nodeA.worldPosition, nodeB.worldPosition); } } ``` 在这个示例代码中,我们首先定义了一个BStarPathfinding类,它包含了一个FindPath函数用于寻找路径。在FindPath函数中,我们首先获取起始节点和目标节点,并将起始节点加入到openSet中。接下来,我们进入一个while循环,直到openSet为空。在每一次循环中,我们获取fCost最小的节点,并将其从openSet中移除,并将其加入到closedSet中。如果当前节点是目标节点,我们就可以通过RetracePath函数得到路径。否则,我们遍历当前节点的所有邻居节点,并更新它们的gCost和hCost值。如果邻居节点不在openSet中,我们就将其加入到openSet中。 RetracePath函数用于从目标节点到起始节点遍历所有的父节点,并将它们加入到一个列表中。由于我们是从目标节点开始遍历的,所以最后需要将路径列表进行翻转。 GetLowestFCostNode函数用于获取fCost最小的节点,Heuristic函数用于计算两个节点之间的估价函数值。在这个示例代码中,我们使用了两个辅助函数来获取节点的邻居列表和将世界坐标转换为节点坐标的功能。这两个函数的具体实现可以参考A*寻路算法的示例代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值