/*动态规划 时间复杂度O(mn) 空间复杂度(mn)
q去匹配s,当两个一个为空,都是false,然后写边界
dp[i][j]代表p的前j个字符匹配s的前s个
边界:dp[0][j]匹配空字符串,只有x*x*X*X*这样的情况才是true
转移方程:先考虑当前
s.charAt(i-1)和p.charAt(j-1)相等的时候 dp[i][j]=dp[i-1][j-1] 这是相等的情况 (还有字符不相等的时候)
字符不相等有三种情况:
p.chgarAt(j-1)属于a~z,但是p.charAt(j-1)!=s.charAt(i-1) 这时候dp[i][j]=false;不需要考虑
p.charAt(j-1)='.' , dp[i][j] = dp[i-1][j-1]
p.charAt(j-1)='*' 这时候要考虑'*'如何匹配,0个或者多个
0个:*取0,例子:ab abc* --->判断 ab是否等于ab即可,即dp[i][j]=dp[i][j-2],
1个:*取1,例子:abb abb* ----->这时候如果s.charAt(i-1)=p.charAt(j-2),这时候*取1,则dp[i][j]=dp[i-1][j]
多个:*取多个 例子:abbbbbbb ab*------>这时候看p的前j个字符匹配s的前i-1个即可,
也就是dp[i][j] =dp[i-1][j],比如这种情况*取了3,那dp[i-1][j] = dp[i-2][j]这种*取了2,直到*取了0,也就是上一种情况,因此没必要单独写
还有p.charAt(j-1) ='*'的情况下如果p.charAt(j-2)='.'例子:ab ab.*,
.*可以匹配任何字符串,因此p的前j个字符能匹配s的前i-1个即可 dp[i][j] = dp[i-1][j]
dp[i][j] = dp[i-1][j]
*/
class Solution {
public boolean isMatch(String s, String p) {
if(s == null || p == null)
return false;
int m = s.length();
int n = p.length();
boolean[][] dp = new boolean[m+1][n+1];
//边界
dp[0][0] = true;
for(int j=2 ; j<=n ; j+=2){
if(p.charAt(j-1)=='*'){ //这种情况才能为true
dp[0][j] = dp[0][j-2];
}
}
//写转移方程
for(int i=1 ; i<=m ; i++){
for(int j=1 ; j<=n ; j++){
char sc = s.charAt(i-1);
char pc = p.charAt(j-1);
if(sc == pc || pc=='.'){
dp[i][j] = dp[i-1][j-1];
}else if(pc=='*'){
if(dp[i][j-2]){
dp[i][j]=true;
}else if(sc == p.charAt(j-2) || p.charAt(j-2)=='.'){
dp[i][j]=dp[i-1][j];
}
}
}
}
return dp[m][n];
}
}
//时间复杂度,主要是排序造成的O(nlogn),线性遍历O(n),则时间复杂度O(nlogn)
//空间复杂度,O(logn),这是除去了额外的返回数组,排序用的
class Solution {
public int[][] merge(int[][] intervals) {
if(intervals.length == 0)
return new int[0][2];
//排序
Arrays.sort(intervals , new Comparator<int[]>(){
public int compare(int[] interval1 , int[] interval2){
return interval1[0]-interval2[0]; //升序
}
});
//升序完进行合并,然后找返回的数组
List<int[]> merged = new ArrayList<int[]>();
for(int i=0 ; i<intervals.length; i++){
int L = intervals[i][0] , R = intervals[i][1]; //写出当前数组的左右边界值
//先写不能合并,直接添加
if(merged.size() == 0 || merged.get(merged.size()-1)[1] < L){
merged.add(new int[]{L,R});
}else{
//这时候就能合并
merged.get(merged.size()-1)[1] = Math.max(R , merged.get(merged.size()-1)[1]);
}
}
return merged.toArray(new int[merged.size()][]);
}
}