2021-06-01LC “阿里题库” 1411. 给 N x 3 网格图涂色的方案数 28. 实现 strStr()

在这里插入图片描述

/*动态规划  每一行 网格图的形式有两种 ABA ABC  
既然用动态规划,就要考虑边界,和转移方程,我们通过dp[i][2]表示前i行一共两种形式,dp[i][0] 是ABA形式 dp[i][1]是ABC形式
边界:i=0 dp[0][0]=6 (ABA形式6种) ,dp[0][1] = 6(ABC形式6种) 不管怎么变,一共也就这12种形式
转移方程:dp[i][0]= 3*dp[i-1][0] + 2*dp[i-1][1]     //通过前i-1层看第i层的ABA形式可以有几种 i>=1
         dp[i][1]= 2*dp[i-1][0] + 3*dp[i-1][1]     //通过前i-1层看第i层的ABC形式可以有几种 i>=1
 时间复杂度O(n),空间复杂度O(n)
*/
class Solution {
    public int numOfWays(int n) {
        long[][] dp = new long[n][2];
        long div = 1000000007;
        dp[0][0] = 6;
        dp[0][1] = 6;
        for(int i=1; i<n ; i++){
            dp[i][0] =(3*dp[i-1][0]+2*dp[i-1][1])%div;
            dp[i][1] =(2*dp[i-1][0]+2*dp[i-1][1])%div;
        }
        return (int)((dp[n-1][0]+dp[n-1][1])%div);
    }
}

在这里插入图片描述

// 时间复杂度O((n-m)*m) 空间复杂度O(1)
class Solution {
    public int strStr(String haystack, String needle) {
        if(needle == null)
            return 0;
        char[] h = haystack.toCharArray();
        char[] n = needle.toCharArray();
        for(int i=0 ; i<=h.length-n.length ; i++){
            int a=i,b=0;
            while(b<n.length && h[a]==n[b]){
                a++;
                b++;
            }
            if(b==n.length) return i;
        }
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值