- 博客(71)
- 收藏
- 关注
原创 【AI模型学习】上/下采样
基于Transformer架构的图像分割模型(如SegFormer、Swin-Unet)中,上采样和下采样结构是标准配置。下采样主要用于提取高层语义特征和减少计算成本,通过降低分辨率和聚焦于更宽范围的上下文信息。
2025-05-22 17:10:44
860
1
原创 【差异分析】FDR
FDR 校正是一种用于多重假设检验的统计方法,旨在控制假发现率(False Discovery Rate),即在所有阳性结果中假阳性的比例。
2025-05-22 12:41:16
1031
原创 【AI模型学习】Gumbel-Softmax —— “软硬皆吃”的函数
Gumbel-Softmax 是一种可微分的替代方案,用于在神经网络中对离散类别变量进行建模与采样。其核心优势在于能够在反向传播中保留梯度信息的同时,实现对离散变量的“近似采样”。
2025-05-22 12:39:39
1148
原创 【差异分析】t-test
独立样本 t 检验(two-sample t-test)是一种用于比较两组样本均值差异的统计方法,广泛应用于基因表达差异分析中。其核心目标是通过构造 t 统计量,检验实验组和对照组的平均表达值是否存在显著差异。
2025-05-21 16:43:48
780
原创 【AI模型学习】ESM2
ESM-2是一个基于Transformer架构的蛋白质语言模型,提供多个版本选择,包括从8M到15B参数的不同规模模型,适用于不同计算需求的任务。
2025-05-21 16:38:57
1639
原创 【聚类】K-means++
K-means++ 是 David Arthur 和 Sergei Vassilvitskii 于2007年提出的改进 k-means 初始化方法,旨在通过更合理地选择初始簇心,减少 k-means 对随机初始化的敏感性,加快收敛并降低陷入次优解的风险
2025-05-19 08:52:29
1599
原创 【聚类】 K-means
K-means 是一种经典的原型聚类算法,旨在将数据点划分为 K 个簇,最大化簇内相似度并最小化簇间差异。其核心步骤包括初始化簇心、迭代优化(分配样本到最近簇心、更新簇心)和收敛判定。
2025-05-18 10:45:03
674
1
原创 【降维】LLE
局部线性嵌入(LLE)是一种基于流形学习的非线性降维方法,由 Roweis 和 Saul 于2000年提出。其主要目标是在低维空间中保留高维数据在局部邻域内的线性重构关系,从而揭示数据的内在低维流形结构。
2025-05-18 10:43:54
809
原创 【降维】t-SNE
t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非线性降维技术,由Laurens van der Maaten和Geoffrey Hinton于2008年提出,主要用于高维数据的可视化和聚类分析。
2025-05-17 09:32:27
916
原创 【降维】PCA
主成分分析(PCA)是一种无监督的线性降维方法,最早由Karl Pearson在1901年提出。其核心目标是在保留数据总方差的前提下,将高维数据投影到低维空间。PCA的应用场景包括降维与可视化、去噪、特征压缩和数据预处理。
2025-05-17 09:31:29
922
原创 【匹配】Gotoh
Gotoh 算法是 Needleman-Wunsch 全局比对算法的改进版本,由 O. Gotoh 于1982年提出,主要用于支持仿射缺口惩罚的序列比对。
2025-05-16 17:44:24
1117
原创 【匹配】Smith-Waterman
Smith-Waterman算法是一种用于生物序列局部比对的经典动态规划方法,由Temple F. Smith和Michael S. Waterman于1981年提出。该算法旨在找到两条序列中得分最高的局部片段比对,允许插入、缺失和错配。
2025-05-15 22:41:46
780
原创 【匹配】Needleman–Wunsch
Needleman-Wunsch算法是一种用于生物序列全局比对的经典动态规划方法,由Saul B. Needleman和Christian D. Wunsch于1970年提出。该算法通过构建积分得分矩阵,利用动态规划递推计算最优比对得分,并通过回溯还原最佳全局比对路径。
2025-05-15 22:40:35
786
原创 【AI模型学习】GPT——从v1到v3
与GPT-2使用的WebText数据集不同,GPT-3的训练数据集规模更大,包含了各种公开的互联网文本资源,如书籍、文章、网站等。Zero-shot学习的能力使得GPT-2在处理不同任务时不需要大量的标注数据,它依靠之前的无监督预训练,已经学到了丰富的语言模式。例如,给定一段简单的描述:“根据下面的文本判断它是积极的还是消极的”,GPT-3可以直接根据文本生成情感分析的结果,完全不需要微调。上的能力也得到了极大的提升。这两个组件使用 mask 的方式有非常重要的差异,直接影响了模型的能力和任务的适用性。
2025-04-27 11:38:31
940
原创 【AI模型学习】双流网络——更强大的网络设计
Two-Stream Convolutional Networks for Action Recognition in Videos作者:Karen Simonyan & Andrew Zisserman(牛津 VGG)
2025-04-24 12:28:35
973
原创 【Python标准库】数学相关的9个标准库
本文档系统化地扩展了 Python 中数字与数学计算标准库的使用方法,适用于数据分析、科学计算、函数式编程、教学等领域的开发实践。
2025-04-19 12:49:08
1531
2
原创 【内置函数】84个Python内置函数全整理
内置函数是 Python 最精华的“基础工具库”,不容忽视!掌握它们,不仅能减少代码量、提升效率,还能避免命名错误和轮子重造。
2025-04-19 12:15:11
1701
15
原创 【AI模型学习】MAE——CV界的无监督预训练
Autoencoders(MAE),其核心思想是通过对图像进行高比例遮挡,仅保留部分可见 patch,并训练模型从中重建原始图像。整体架构采用不对称设计:编码器(encoder)仅处理未被遮挡的 patch,聚焦学习图像的全局语义特征;解码器(decoder)接收全部 patch 位置(包括 mask token),以较小规模重建图像像素。
2025-04-15 12:39:39
1366
11
原创 【模型学习之路】NTN块,SimGNN
学习一下SimGNN,同时也重点学习一下NTN模块以及Pairwise Node Comparison等常用的操作。
2024-11-27 22:50:40
934
原创 【不写for循环】玩玩行列
利用numpy的并行操作可以比纯用Python的list快很多,不仅如此,代码往往精简得多。So, 这篇来讲讲进阶的广播和花哨索引操作,少写几个for循环()。
2024-11-17 21:45:37
1272
原创 【Java面向对象】泛型
然后这里的 <T> 表示形 式泛 型类型( formal generic type), 随后可以用一个 实际具体类型( actual concrete type)来替换它。替换泛型类型称为泛型 实例化( generic instantiation)。按照惯例,像 E 或 T 这样的单个大写字母用于表示形式泛型类型。如果方法一,可以过编译(父类变量指子类对象合法),但是运行有错,因为字符串不能与 Date对象进行比较。
2024-07-22 12:32:37
1384
用python实现k-means算法,同时进行可视化
2024-06-02
用python代码实现的熵权法
2024-06-02
Python文件实现一个使用Ridge回归和普通线性回归来拟合带有噪声的数据集
2024-06-01
spss尝试连接到远程服务器失败
2024-03-30
有没有懂行的人能写出正确的代码,如何解决?(关键词-rdkit中文教程)
2024-03-01
线性规划问题结果有问题
2024-01-22
大一第一次参加美赛,成员信息不会操作
2024-01-13
如何用函数进行牛顿插值
2024-01-11
sympy画图的问题
2024-01-07
如何用Python画三维隐函数?
2023-12-10
TA创建的收藏夹 TA关注的收藏夹
TA关注的人