我们有这么多各式各样的工具,互联网给我们带来了这么多用户和数据,这是好事也有副作用。世界上能访问用户数据,并根据数据做分析和改进的公司,大概 Google 是其中翘楚,这种 data-centric 的做法做过了头,也有悲剧发生:
Douglas Bowman 曾经是Google 的视觉设计主管,2009年的一天,他受不了了:
"Yes, it's true that a team at Google couldn't decide between two blues. sothey're testing 41 shades between each blue to see which one performs betterI had a recent debate over whether a border should be 3, 4, or 5 pixels wide.and was asked to prove my case. l can't operate in an environment like that've grown tired of debating such minuscule design decisions.."
问:当你的公司要你用数据来证明41种蓝色到底哪一种更好,或者为一个边栏宽度是3,4,或5而争执不休,纷纷表示要拿数据来证明的时候,你怎么办?
答:在系统分析与设计中,“做过头”意味着过度依赖数据分析,简单地认为越多数据做支撑就越好,或者说对细节的过度关注,忽略了主观看法和亲身体会,没有从用户实际需要出发。这种做法其实就是“过度数据化”,不是所有的东西都需要大量数据进行支撑的,要根据具体情况决定。“过度数据化”也许会面临以下问题:
1.设计过度数据化:设计不应该是千篇一律,仅仅追求数据化会让审美疲劳,设计最重要的是满足需求。尽管数据有助于支持决策,但设计和用户体验往往是主观的领域,而不仅仅依赖于数据。设计过度追求数据化可能会导致不必要的资源浪费,成本时间都会有一定耗费,比如为一个边栏宽度是3,4,或5而争执不休,要比预期花费更多的时间和精力去实现
2.低效的决策过程:过分关注细节和过分依赖数据会在前期耗费精力使得项目进程效率低,如Douglas Bowman的案例,为一个边栏宽度是3,4,或5而争执不休,可能致使决策变得困难,团队间没办法达成某种达成共识,而影响项目进度。
3.可能因小失大:如果过度专注于某一细节,可能将注意力分散到小细节中去,而忽视了对整体架构和交互流程的审视,降低整体的用户体验。
4.限制创新:仅仅根据数据来决定会使人失去原有的判断力,过于依赖数据,就会限制创新,没有了创新产品就失去了灵活性,也可能会错过寻找更合适的机会
5.费时费力:过度的数据分析或设计可能会拖延进度,因长时间关注细枝末节被过多占用导致后面的操作无法正常开展下去,也可能因为内部意见不合,产生分歧,使产出的价值小于投入,既增加了时间成本,也可能导致人力物力的浪费,后期也很难根据需求变动进行调整
总结:解决上述问题的关键是在团队讨论中,尊重每个人的意见,强调团队合作和沟通的重要性,关注数据和事实,但不能“做过头”,最终基于数据和团队做出决策,在关注细节与把握全局之间,找到一个恰当的平衡点。如果公司仍然坚持要求我提供数据来支持这样的决策,我可能会先沟通分析利弊,然后再根据事情的复杂和紧急程度通过别的办法来解决这个问题。例如,前期进行两组测试来比对,先设计相应的产品原型或界面布局,并进行可用性测试。邀请具有代表性的用户参与测试,观察他们在不同宽度下的操作行为和体验,以便在实际情况下比较不同选项的表现。或者在进行数据分析的同时,配合着根据专业人士团队之间的看法,不同人有不同经验,从实际出发以确保我们的设计决策不仅仅基于数据,而是兼顾创造性和直觉。