对于C(n,k)*k求和,k从1到n

本文详细解析了组合数学中一个重要的公式推导过程,即C(n,k)*k=n*C(n-1,k-1),并进一步展示了如何利用该公式计算从1*C(n,1)到n*C(n,n)的累加和,最终简化为n*2^(n-1)的简洁形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C(n,k)*k
=k*n!/[(n-k)!k!]
=n*(n-1)!/[(k-1)!(n-k)!]
=n*C(n-1,k-1)
1*C(n,1)+2*C(n,2)+3*C(n,3)+.+n*C(n,n)
=n[C(n-1,0)+C(n-1,1)+C(n-1,2)+.+C(n-1,n-1)]
=n*2^(n-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值