1 RSA算法的原理如下:
1.1原理
假设我们需要将信息从机器A传到机器B,首先由机器B随机确定一个Key,我们称之为密匙private_key,将这个可KEY始终保存在机器B中而不发出来;然后,由这个private_key计算出另一个Key,我们称之为公匙Public_key。这个Public_key的特性是几乎不可能通过该Key计算生成它的private_key。接下来通过网络把这个Public_key传给机器A,
机器A受到Public_key后,利用该key,将信息加密,并把加密后的信息通过网络发送到机器B,最后机器B利用已知的private_key,就可以解开加密信息。
1.2步骤
RSA算法的 安全 性依赖于大数因数分解的困难性。公匙和私匙都是两个大素数的函数。
1.2.1
首先选择两个大素数p、q,计算n=p*q; m=(p-1)*(q-1);
1.2.2
而后随机选择加密密匙Public_key,要求和m互质,比如Public_key=m-1;
1.2.3
利用欧几里德算法计算解密密匙private_key,使private_key满足
Public_key*private_key三1(mod m)
其中Public_key,n是公匙,private_key是密匙
1.2.4
加密信息text时,利用公式secretword=text^Public_key (mod n)得到密文secretword
1.2.5
解密时利用公式word=text^private_key(mod n)得到原文word=text.。
2程序
本算法用JAVA编程语言实现,开发环境为Eclipse
//BJTU 软件0404
import java.io.*;
public class Rsa
{
private int p=0;
private int q=0;
private long n=0;
private long m=0;
private long public_key=0;//公匙
private long private_key=0;//密匙
private long text=0;//明文
private long secretword=0;//密文
private long word=0;//解密后明文
//判断是否为素数
public boolean primenumber(long t)
{
long k=0;
k=(long)Math.sqrt((double)t);
boolean flag=true;
outer:for(int i=2;i<=k;i++)
{
if((t%i)==0)
{
flag = false;
break outer;
}
}
return flag;
}
//输入PQ
public void inputPQ()throws Exception
{
do{
System.out.println("请输入素数p: ");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.p=Integer.parseInt(br);
}
while(!primenumber(this.p));
do{
System.out.println("请输入素数q: ");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.q=Integer.parseInt(br);
}
while(!primenumber(this.q));
this.n=this.p*this.q;
this.m=(p-1)*(q-1);
System.out.println("这两个素数的乘积为p*q:"+this.n);
System.out.println("所得的小于N并且与N互素的整数的个数为m=(p-1)(q-1):"+this.m);
}
//求最大公约数
public long gcd(long a,long b)
{
long gcd;
if(b==0)
gcd=a;
else
gcd=gcd(b,a%b);
System.out.println("gcd:"+gcd);
return gcd;
}
//输入公匙
public void getPublic_key()throws Exception
{
do{
System.out.println("请输入一个公钥的值,这个值要求小于m并且和m互质: ");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.public_key=Long.parseLong(br);
}while((this.public_key >= this.m) || (this.gcd(this.m,this.public_key)!=1));
System.out.println("公钥为:"+this.public_key);
}
//计算得到密匙
public void getPrivate_key()
{
long value=1;
outer:for(long i=1;;i++)
{
value=i*this.m+1;
System.out.println("value: "+value);
if((value%this.public_key==0)&& (value/this.public_key < this.m))
{
this.private_key=value/this.public_key;
break outer;
}
}
System.out.println("产生的一个私钥为:"+this.private_key);
}
//输入明文
public void getText()throws Exception
{
System.out.println("请输入明文:");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.text=Long.parseLong(br);
}
//加密、解密计算
public long colum(long y,long n,long key)
{
long mul;
if(key==1)
mul=y%n;
else
mul=y*this.colum(y,n,key-1)%n;
return mul;
}
//加密后解密
public void pascolum()throws Exception
{
this.getText();
System.out.println("输入明文为: "+this.text);
//加密
this.secretword=this.colum(this.text,this.n,this.public_key);
System.out.println("所得的密文为:"+this.secretword);
//解密
this.word=this.colum(this.secretword,this.n,this.private_key);
System.out.println("解密后所得的明文为:"+this.word);
}
public static void main(String []args)throws Exception
{
Rsa t = new Rsa();
t.inputPQ();
t.getPublic_key();
t.getPrivate_key();
t.pascolum();
}
}
3试验介绍
2.1输入PQ,计算m、n
3.2输入公匙,产生密匙
3.3输入明文,产生密文,并解密
此处时间限制,明文暂时用个数字代替,有兴趣的可以改变程序,变成一段数字
请输入素数p:
23
请输入素数q:
29
这两个素数的乘积为p*q:667
所得的小于N并且与N互素的整数的个数为m=(p-1)(q-1):616
请输入一个公钥的值,这个值要求小于m并且和m互质:
611
gcd:1
gcd:1
gcd:1
gcd:1
公钥为:611
产生的一个私钥为:123
请输入明文:
311
输入明文为: 311
所得的密文为:653
解密后所得的明文为:311
1.1原理
假设我们需要将信息从机器A传到机器B,首先由机器B随机确定一个Key,我们称之为密匙private_key,将这个可KEY始终保存在机器B中而不发出来;然后,由这个private_key计算出另一个Key,我们称之为公匙Public_key。这个Public_key的特性是几乎不可能通过该Key计算生成它的private_key。接下来通过网络把这个Public_key传给机器A,
机器A受到Public_key后,利用该key,将信息加密,并把加密后的信息通过网络发送到机器B,最后机器B利用已知的private_key,就可以解开加密信息。
1.2步骤
RSA算法的 安全 性依赖于大数因数分解的困难性。公匙和私匙都是两个大素数的函数。
1.2.1
首先选择两个大素数p、q,计算n=p*q; m=(p-1)*(q-1);
1.2.2
而后随机选择加密密匙Public_key,要求和m互质,比如Public_key=m-1;
1.2.3
利用欧几里德算法计算解密密匙private_key,使private_key满足
Public_key*private_key三1(mod m)
其中Public_key,n是公匙,private_key是密匙
1.2.4
加密信息text时,利用公式secretword=text^Public_key (mod n)得到密文secretword
1.2.5
解密时利用公式word=text^private_key(mod n)得到原文word=text.。
2程序
本算法用JAVA编程语言实现,开发环境为Eclipse
//BJTU 软件0404
import java.io.*;
public class Rsa
{
private int p=0;
private int q=0;
private long n=0;
private long m=0;
private long public_key=0;//公匙
private long private_key=0;//密匙
private long text=0;//明文
private long secretword=0;//密文
private long word=0;//解密后明文
//判断是否为素数
public boolean primenumber(long t)
{
long k=0;
k=(long)Math.sqrt((double)t);
boolean flag=true;
outer:for(int i=2;i<=k;i++)
{
if((t%i)==0)
{
flag = false;
break outer;
}
}
return flag;
}
//输入PQ
public void inputPQ()throws Exception
{
do{
System.out.println("请输入素数p: ");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.p=Integer.parseInt(br);
}
while(!primenumber(this.p));
do{
System.out.println("请输入素数q: ");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.q=Integer.parseInt(br);
}
while(!primenumber(this.q));
this.n=this.p*this.q;
this.m=(p-1)*(q-1);
System.out.println("这两个素数的乘积为p*q:"+this.n);
System.out.println("所得的小于N并且与N互素的整数的个数为m=(p-1)(q-1):"+this.m);
}
//求最大公约数
public long gcd(long a,long b)
{
long gcd;
if(b==0)
gcd=a;
else
gcd=gcd(b,a%b);
System.out.println("gcd:"+gcd);
return gcd;
}
//输入公匙
public void getPublic_key()throws Exception
{
do{
System.out.println("请输入一个公钥的值,这个值要求小于m并且和m互质: ");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.public_key=Long.parseLong(br);
}while((this.public_key >= this.m) || (this.gcd(this.m,this.public_key)!=1));
System.out.println("公钥为:"+this.public_key);
}
//计算得到密匙
public void getPrivate_key()
{
long value=1;
outer:for(long i=1;;i++)
{
value=i*this.m+1;
System.out.println("value: "+value);
if((value%this.public_key==0)&& (value/this.public_key < this.m))
{
this.private_key=value/this.public_key;
break outer;
}
}
System.out.println("产生的一个私钥为:"+this.private_key);
}
//输入明文
public void getText()throws Exception
{
System.out.println("请输入明文:");
BufferedReader stdin=new BufferedReader(new InputStreamReader(System.in));
String br=stdin.readLine();
this.text=Long.parseLong(br);
}
//加密、解密计算
public long colum(long y,long n,long key)
{
long mul;
if(key==1)
mul=y%n;
else
mul=y*this.colum(y,n,key-1)%n;
return mul;
}
//加密后解密
public void pascolum()throws Exception
{
this.getText();
System.out.println("输入明文为: "+this.text);
//加密
this.secretword=this.colum(this.text,this.n,this.public_key);
System.out.println("所得的密文为:"+this.secretword);
//解密
this.word=this.colum(this.secretword,this.n,this.private_key);
System.out.println("解密后所得的明文为:"+this.word);
}
public static void main(String []args)throws Exception
{
Rsa t = new Rsa();
t.inputPQ();
t.getPublic_key();
t.getPrivate_key();
t.pascolum();
}
}
3试验介绍
2.1输入PQ,计算m、n
3.2输入公匙,产生密匙
3.3输入明文,产生密文,并解密
此处时间限制,明文暂时用个数字代替,有兴趣的可以改变程序,变成一段数字
请输入素数p:
23
请输入素数q:
29
这两个素数的乘积为p*q:667
所得的小于N并且与N互素的整数的个数为m=(p-1)(q-1):616
请输入一个公钥的值,这个值要求小于m并且和m互质:
611
gcd:1
gcd:1
gcd:1
gcd:1
公钥为:611
产生的一个私钥为:123
请输入明文:
311
输入明文为: 311
所得的密文为:653
解密后所得的明文为:311