1.数据连接
1.1连接类型
①本地文件
- csv数据连接到文本
- xls/xlsx连接到Excel
- json直接连接到json
②数据库
1.2连接方式
默认使用智能连接,只需要选择所用的数据字段
1.3提取方式
①实时
每次计算都连接数据库取数
②数据提取
将当前连接所涉及的数据全部都查询提取到hype格式的数据提取(相当于Tableau自己的数据库和对应类型的文件)
1.4连接筛选
可以在提取数据后进行预筛选,只保留筛选后的数据进行视图操作
1.5保存类型
- twb不包含数据
- twbx内置数据到tableau的文件中
- 点提取但是还没保存时,tableau会让你先保存提取的数据
1.6数据处理
- 可以查看数据,进行排序、重命名、拆分等操作
- 这些操作在做图界面也可以完成
2.数据可视化原理
2.1基础知识
数据变成图表的过程,就是用数据映射到视觉图形的过程
对于可视化来说,数据有【维度】和【度量】两种类型
数值型变量【度量】Measures一般是由数字组成的变量
类别型变量【维度】Dimensions只能进行计数和分布等简单计算类别变量包含有限的类别数或可区分组数(数值变量过多时需要分组)
红色框是维度、黄色框是度量
【度量】映射图形,【维度】负责区分
Tableau会自动区分变量类型,两者之间也可以根据可视化需求进行转换
图形的本质是视觉感知的单位,而这个单位
数据可视化领域的四大金刚:散点图、柱状图/条形图、饼图、折线图
2.2使用tableau将数据变成表格
对【度量】和【维度】进行拖拽操作,从而完成可视化图表的制作,是被称为Tableau第一概念,是最重要的知识
可拖拽操作的区域主要有以下3个
①行列
行:将字段作为纵轴
列:将字段作为横轴
二者可以通过转置交换
上述两图互为行列转置
②标记卡
用来切换数据对应的视觉映射类型
调整图表颜色、标记、大小等展示细节
③筛选器
将指定变量作为筛选条件
Tableau可视化原理的第二个概念:维度会对度量值进行区分,增加度量值的信息密度(单个图表传达信息的多少)
将门店名称放在标记的颜色和文本、GMV之和放在大小这样就得到一个有关门店名称和GMV 大小的词云图,其中字体大小表示GMV之和的大小,字体的颜色代表不同门店,我们因此做到了增加度量值的信息密度。
将标记改为圆就生成了气泡图
从上述几个图来看可以做出如下总结
有的图像有数轴、有的图像没有数轴,由此我们引入
Tableau可视化原理的第三个概念:图表分为有轴图表和无轴图表(极坐标图表)
Tableau可以简单实现额度无轴图主要有树地图、饼图、气泡图、词云这四种,都是将度量放到大小上,维度放在颜色、标签、详细信息上,然后选择对应的图形标记
Tableau可视化原理的第四个概念:离散形成标签,连续形成数轴
我们常说的度量一般都是连续的,而只有在行或列上的连续性的变量才能形成数轴,是一个有逻辑的连续不可分的参考系
而维度一般都是离散的,离散的变量会形成一个个独立的标签,是一个可以改变顺序彼此独立只是排布到一起的参考系