怎样优化J2ME程序当中的paint()函数

怎样优化J2ME程序当中的paint()函数

时间:2008-02-23 09:35来源:互联网

优化 J2ME 中的 paint() 函数 林刚 { lirincy@163.com, 引用须注明出处作者 } 关键字:优化 paint J2ME, 局部刷新,局部重画,图片 我们经常会遇到这样的问题,在模拟器上跑得很好的程序在实际的手机上却很慢,甚至运行不了,这大多数是因为重画机制的使用不当所致,J2    优化J2ME中的paint()函数 林刚 { lirincy@163.com, 引用须注明出处作者}

 关键字:优化 paint J2ME, 局部刷新,局部重画,图片 我们经常会遇到这样的问题,在模拟器上跑得很好的程序在实际的手机上却很慢,甚至运行不了,这大多数是因为重画机制的使用不当所致,J2ME中的paint()函数起到了画屏幕的作用,往往在需要动画的情况下非常频繁地需要调用,而且在一些低端手机或移动设备上面,对于paint()函数的频繁调用会引起相应时间长甚至无法正常工作等问题。所以,对于paint()函数的优化就显得特别重要。这里,我们提出几点优化paint()函数的方法和注意事项,在编程中大家可以参考: 1.不要在paint()函数当中使用耗时的操作,比如: try{ Image image_Splash = Image.createImage("/back.png"); g.drawImage(image_Splash, 0, 0,Graphics.TOP | Graphics.LEFT); } catch(Exception ex) { } 其中的创建图片的方法由于需要IO操作非常费时,因此要尽量避免,创建操作只在初始化的时候做一遍。 2.使用像素较小的图片,一般来书,颜色种类少的图片显示时间就少,因此,尽量避免使用256色以上的图片,一些色调丰富,过度缓慢的图片往往需要 多种像素来满足需求,因此,尽量使用卡通图片,或者转换成256或16色的图片,会减少绘图时间。 3.局部刷新, 每次的重画repaint()都要调用paint(),而并不是每一次repaint()都要重画整个屏幕,因此有时候之需要重画部分屏幕即可,这又有两种方法可以实现,第一种是利用Clip,Clip是一个矩形的绘图区域,当重绘时,仅仅重绘这个区域以内的内容,而不管其他部分,因此可以节省操作,可 以通过setClip()等函数设定绘图区域。 另外可以通过repaint( x,y,width,height )来重画指定的某一个区域,这个函数实际上也是设定了某一个重绘Clip(),不过使用起来会更加方便。 4.减少repaint()的次数,尽量只在产生作用的时候才重画。 5.将paint()函数的部分内容提到外面来做,使得重画减少计算量和操作。 6.使用双缓存技术,某些设备本身就支持双缓存技术,判断设备是否支持双缓存可以用Canvas类的isDoubleBuffered()方法。实现双缓存可以使用Image 类的可变图像技术。如,利用:

image = Image.createImage( width, height );
Graphics g = image.getGraphics();
来建立一个可变图像,它和Canvas一样都能够得到Graphics绘图对象的绘制。而且可以不在paint()函数里面,这一点非常重要。可以在init()中放入 绘图语句,或者放到一个单独的函数中,把图片绘制到屏幕外缓冲当中,然后在paint()函数中仅仅是把这个Image绘制到当前的Canvas里面了,这样 就可以节省很多计算操作。比如:
public void paint(Graphics g){
g.translate(x - g.getTranslateX(), y - g.getTranslateY());//设置当前坐标系统
g.drawImage(image,0,0,g.TOP|g.LEFT);
g.translate(x - g.getTranslateX(), y - g.getTranslateY());//改回原来的坐标系统
}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值