[23ACL-findings] [Reference 1]DiffuSum: Generation Enhanced Extractive Summarization with Diffusion

本文提出了一种新的抽取式摘要方法DiffuSum,利用扩散模型直接生成摘要,结合Sentence-BERT获取句子表示并通过匹配进行抽取。该方法补充了summary-level抽取式摘要,并强调了编码器的匹配和多样性损失。实验结果显示尽管提升有限,但方法创新独特。
摘要由CSDN通过智能技术生成

DiffuSum: Generation Enhanced Extractive Summarization with Diffusion

论文信息:
来源:
IFM Lab, Department of Computer Science, University of California, Davis, CA, USA
haopeng,xiao,jiawei@ifmlab.org
作者:Haopeng Zhang∗, Xiao Liu∗, Jiawei Zhang

1.Motivation
  • 大多数的抽取式摘要,通常被表述为一个序列标注问题,通过预测每一个句子的0/1标注,来判断句子是否包含在摘要中。而Ming Zhong, Pengfei Liu(2020)提出的MatchSum模型表示,summary-level的方法,更有利于生成一个好的摘要,但它仍然要先采用序列标注法来获取top-k的句子,才能进一步使用summary-level的方法。
  • 由于生成模型具有更大的灵活性,并考虑了输入上下文的整体性,将生成模型应用于广泛的token-level序列标记任务,已经获取了成功(如:生成式摘要)。然而,如何将生成模型应用于sentence-level的任务,如抽取式摘要,尚未得到研究。
  • 最近,已经有学者研究如何将diffusion models用于NLP文本生成任务中,并取得不错的结果。
  • 因此,本文提出了一种新的摘要抽取范式DiffuSum࿰
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值