凯莱哈密顿定理应用

 

(1)

 首先,根据特征值方程,直接求出三个特征值0,-1,-2

这个值也可以通过tr(A)=-3和det(A)=0才出来

如果用相似变换,因为不是实对称矩阵,需要计算特征向量和逆矩阵,这个计算量比较大的,

由凯莱哈密顿定理,必有A^3+3A^2+2A=0

考虑构造如下函数

x^{99}=f(x)(x^3+3x^2+2x)+ax^2+bx+c

f(x)是一个多项式函数,令x=-1以及x=-2,x=0有c=0

-1 = a-b,-2^99 = 4a-2b,a=-2^98+1,b=-2^98

因为右边第一项必为0

所以A^{99}=aA^2+bA

矩阵乘法可以使用分块矩阵乘法技巧,有两个零元,此时计算

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值