设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。
你的 KthLargest
类需要一个同时接收整数 k
和整数数组nums
的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add
,返回当前数据流中第K大的元素。
示例:
int k = 3; int[] arr = [4,5,8,2]; KthLargest kthLargest = new KthLargest(3, arr); kthLargest.add(3); // returns 4 kthLargest.add(5); // returns 5 kthLargest.add(10); // returns 5 kthLargest.add(9); // returns 8 kthLargest.add(4); // returns 8
说明:
你可以假设 nums
的长度≥ k-1
且k
≥ 1。
每次维护一个size为k的小顶堆,进来一个数,进把它push到小顶堆(minHeap)中,如果小顶堆的size>k,则进行调整操作。
class KthLargest {
public:
KthLargest(int k, vector<int> nums)
{
int n=nums.size();
priority_queue_size = k;
for(int i=0;i<n;i++)
{
myqueue.push(nums[i]);
if(i>k-1)
{
myqueue.pop(); // 当元素个数超过k后,需要调整小顶堆
}
}
}
int add(int val)
{
myqueue.push(val);
if(myqueue.size()>priority_queue_size)
myqueue.pop();
return myqueue.top();
}
priority_queue<int,vector<int>,greater<int> > myqueue; // 小顶堆
int priority_queue_size;
};
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/