题目描述
小易参加了一个骰子游戏,这个游戏需要同时投掷n个骰子,每个骰子都是一个印有数字1~6的均匀正方体。
小易同时投掷出这n个骰子,如果这n个骰子向上面的数字之和大于等于x,小易就会获得游戏奖励。
小易想让你帮他算算他获得奖励的概率有多大。
输入描述:
输入包括两个正整数n和x(1 ≤ n < 25, 1 ≤ x < 150),分别表示骰子的个数和可以获得奖励的最小数字和。
输出描述:
输出小易可以获得奖励的概率。 如果概率为1,输出1,如果概率为0,输出0,其他以最简分数(x/y)的形式输出。
示例1
输入
3 9
输出
20/27
首先用动态规化求出方案数,在计算出概率,注意特判掉特殊情况
#include <iostream>
#include <cmath>
using namespace std;
const int N = 1000;
typedef long long LL;
LL dp[N][N];
// dp[i][j] 表示前掷i个骰子,之和等于j的方案数
LL gcd(LL a, LL b) { //求最大公约数
LL temp;
while (b > 0) {
temp = a % b;
a = b;
b = temp;
}
return a;
}
int main()
{
int n, x;
cin >> n >> x;
if(x==n){
cout<<1<<endl;
return 0;
}
LL count = pow(6, n);
if(x>count){
cout<<0<<endl;
return 0;
}
for (int i = 1; i <= 6; i++)
dp[1][i] = 1; // 边界条件
for (int i = 2; i <= n; i++) {
for (int j = 1; j <= 6 * i; j++) {
for (int k = 1; k <= 6; k++) {
if (j > k) {
dp[i][j] += dp[i - 1][j - k];
}
}
}
}
LL sum=0;
for (int i = x; i <= 6 * n; i++)
sum += dp[n][i];
if(sum==0){
cout<<0<<endl;
return 0;
}
LL g = gcd(count, sum);
cout << sum / g << "/" << count / g << endl;
}