2018 网易校招 骰子游戏

题目描述

小易参加了一个骰子游戏,这个游戏需要同时投掷n个骰子,每个骰子都是一个印有数字1~6的均匀正方体。
小易同时投掷出这n个骰子,如果这n个骰子向上面的数字之和大于等于x,小易就会获得游戏奖励。
小易想让你帮他算算他获得奖励的概率有多大。

输入描述:

输入包括两个正整数n和x(1 ≤ n < 25, 1 ≤ x < 150),分别表示骰子的个数和可以获得奖励的最小数字和。

输出描述:

输出小易可以获得奖励的概率。
如果概率为1,输出1,如果概率为0,输出0,其他以最简分数(x/y)的形式输出。

示例1

输入

3 9

输出

20/27

首先用动态规化求出方案数,在计算出概率,注意特判掉特殊情况

#include <iostream>
#include <cmath>
using namespace std;
const int N = 1000;
typedef long long LL;
LL dp[N][N];
// dp[i][j] 表示前掷i个骰子,之和等于j的方案数


LL gcd(LL a, LL b) {        //求最大公约数 
	LL temp;
	while (b > 0) {
		temp = a % b;
		a = b;
		b = temp;
	}
	return a;
}

int main()
{
	int n, x;
	cin >> n >> x;
    
    if(x==n){
        cout<<1<<endl;
        return 0;
    }
    
	LL count = pow(6, n);
    if(x>count){
        cout<<0<<endl;
        return 0;
    }
	for (int i = 1; i <= 6; i++)
		dp[1][i] = 1;              // 边界条件
    
	for (int i = 2; i <= n; i++) {
		for (int j = 1; j <= 6 * i; j++) {
			for (int k = 1; k <= 6; k++) {
				if (j > k) {
					dp[i][j] += dp[i - 1][j - k];
				}

			}
		}
	}

	LL sum=0;
	for (int i = x; i <= 6 * n; i++)
		sum += dp[n][i];

    if(sum==0){
        cout<<0<<endl;
        return 0;
    }
	LL g = gcd(count, sum);
	cout << sum / g << "/" << count / g << endl;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值