棋盘覆盖问题

分治法的设计思想:

将一个规模为n的问题分解为k个规模较小的相同子问题,这些子问题相互独立且与原问题相同。

递归地这些子问题,然后将子问题地解合并得到原问题的解。

const int size=4;       //size为棋盘的行数、列数
int title=0;           //记录需要的数目
int board[size][size];   //数组表示棋盘大小
void chessboard(int tr,int tc,int dr,int dc,int size)   //tr、tc 左上角的行和列   dr、dc残缺的行和列
{
    if(size == 1)  return ;
    int t=title++;
    int s=size/2;

    //覆盖左上角子棋盘
    if(dr<tr+s && dc<tc+s)
        chessboard(tr,tc,dr,dc,s);
    else
    {
        board[tr+s-1][tc+s-1]=t;
        chessboard(tr,tc,tr+s-1,tc+s-1,s);
    }

    //覆盖右上角子棋盘
    if(dr<tr+s && dc>=tc+s)
        chessboard(tr,tc+s,dr,dc,s);
    else
    {
        board[tr+s-1][tc+s]=t;
        chessboard(tr,tc,tr+s-1,tc+s,s);
    }

    //覆盖左下角子棋盘
    if(dr>=tr+s && dc<tc+s)
        chessboard(tr+s,tc,dr,dc,s);
    else
    {
        board[tr+s][tc+s-1]=t;
        chessboard(tr+s,tc,tr+s,tc+s-1,s);
    }

    //覆盖右下角子棋盘
    if(dr>=tr+s && dc>=tc+s)
        chessboard(tr+s,tc+s,dr,dc,s);
    else
    {
        board[tr+s][tc+s]=t;
        chessboard(tr+s,tc+s,tr+s,tc+s,s);
    }
}
int main()
{
    int r,c;
    cin>>r>>c;
    if( r>0 && r<=size && c>0 && c<=size )
        chessboard(1,1,r,c,size);
    cout<<title<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值