【无标题】

win11,win10使用小米随身wifi

普通下载官方软件安装包安装后一定会出现无法创建wifi的情况,甚至连有线网络都上不了了;这是因为官方没有维护小米随身wifi对新系统的适配了,我也是踩了不少坑才在win11上让小米随身wifi重换生机的。下面由我来一步步告诉你怎么弄。

1.下载的软件包用解压软件打开(我用的是7-zip,你也可以直接从我分享的百度云上下:链接:https://pan.baidu.com/s/1R6X5zDtb9Kvku8VWuIpupQ?pwd=9u4w 提取码:9u4w )

2.然后安装 netr28ux.inf 文件

3.到设备管理器中(此电脑→管理→设备管理器→网络适配器)找到“Xiaomi 802.11n USB Wireless Adapter”项,鼠标右键,【更新驱动程序】→【浏览我的电脑以查找驱动程序】→【让我从计算机上的可用驱动程序列表中选取】→【取消“显示兼容硬件”的勾选】→【厂商选择“MediaTek, inc.”】→【型号选择“802.11 n USB 无线Lan卡”】→【点击下一步,警告框选择“是”】;大功告成!你又可以开心地使用wifi上网了。

本文来自博客园,作者:一口吃不成胖子,原文链接:https://www.cnblogs.com/JarryShu/p/17931395.html

<think>好的,我现在需要帮助用户了解如何在Streamlit应用中使用YOLOv8进行训练。用户提到想要一个示例或指南,所以我需要先回顾YOLOv8的训练流程,然后结合Streamlit的集成方法。 首先,YOLOv8的训练通常需要配置数据集、定义模型参数、启动训练过程,并监控结果。用户可能已经知道这些,但需要将其嵌入到Streamlit的界面中。根据引用[2],Ultralytics库简化了训练,自动处理权重调整和反向传播,所以应该利用这一点来减少代码复杂度。 接下来,Streamlit是一个用于快速创建数据应用的工具,用户可能希望有一个交互式界面来上传数据、调整超参数并实时查看训练进度。因此,我需要设计一个Streamlit应用的结构,包括文件上传组件、参数输入滑块、训练按钮和结果展示区域。 需要考虑的步骤可能包括: 1. 安装必要的库,如ultralytics和streamlit。 2. 创建Streamlit界面元素,如侧边栏用于参数设置,主区域显示训练结果。 3. 处理用户上传的数据集,可能需要检查数据格式是否正确(如YOLO格式的目录结构)。 4. 将用户输入的参数传递给YOLOv8模型,启动训练。 5. 实时显示训练日志和指标,如损失函数和准确率。 6. 训练完成后保存模型,并提供下载选项。 在代码实现时,需要确保YOLOv8的训练过程能在Streamlit的上下文中正确运行。需要注意的是,Streamlit的脚本执行模式是每次交互都会重新运行整个脚本,所以需要处理好状态持久化的问题,比如使用st.session_state来保存训练状态,避免重复提交训练任务。 另外,引用[1]提到了验证训练好的模型,所以在示例中可以加入验证步骤,展示模型性能指标。同时,引用[2]提到Ultralytics库自动处理验证,可能需要在训练完成后调用验证方法,并在界面中显示结果。 用户可能遇到的挑战包括数据集路径的正确配置、Streamlit的实时更新训练日志、以及处理长时间训练任务时的界面响应。因此,在示例代码中需要处理异常,比如检查数据集是否存在,提供清晰的错误提示,并可能使用Streamlit的进度条或状态信息来增强用户体验。 最后,需要生成相关问题,帮助用户深入理解相关主题,比如性能优化、部署到Streamlit的注意事项,以及如何处理训练中的常见问题。这些问题应基于用户可能遇到的后续疑问来设计。</think>以下是使用YOLOv8在Streamlit应用中实现模型训练的完整指南: ### 1. 环境准备 安装依赖库: ```bash pip install ultralytics streamlit ``` ### 2. 创建Streamlit应用 新建`yolo_train_app.py`文件,包含以下核心模块: ```python import streamlit as st from ultralytics import YOLO import os # 界面配置 st.set_page_config(page_title="YOLOv8训练器", layout="wide") # 侧边栏控件 with st.sidebar: st.header("训练参数设置") epochs = st.slider("训练轮次", 1, 100, 10) batch_size = st.slider("批大小", 8, 64, 16) input_size = st.selectbox("输入尺寸", [640, 320, 416]) # 主界面 st.title("YOLOv8定制训练平台") # 数据集上传组件 uploaded_files = st.file_uploader("上传数据集(zip格式)", type=["zip"], accept_multiple_files=False) dataset_path = st.text_input("或输入本地数据集路径", "data/dataset.yaml") # 训练控制 if st.button("开始训练"): if not os.path.exists(dataset_path): st.error("数据集路径无效!") else: with st.spinner("训练进行中..."): # 初始化模型 model = YOLO("yolov8n.yaml").load("yolov8n.pt") # 启动训练 results = model.train( data=dataset_path, epochs=epochs, batch=batch_size, imgsz=input_size, verbose=True ) # 保存模型 model.save("trained_model.pt") st.success("训练完成!") # 显示训练结果 st.image("runs/detect/train/results.png") st.download_button("下载模型", "trained_model.pt") ``` ### 3. 数据集要求 确保数据集符合YOLO格式: ``` dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 需要提供描述文件`dataset.yaml`[^1]: ```yaml path: /path/to/dataset train: images/train val: images/val names: 0: class1 1: class2 ``` ### 4. 运行应用 ```bash streamlit run yolo_train_app.py ``` ### 5. 功能扩展建议 - 实时训练指标可视化(损失曲线、准确率等) - 数据集预览功能 - 模型验证接口集成 - 超参数自动优化模块 - 训练中断恢复机制
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值