《零基础学量化需Python基础(附完整代码+免费培训资料)》
一、项目背景
Python是量化交易的黄金语言,而基于免费量化平台为开发者提供了强大的策略回测能力。本文将通过一个“基本面因子批量生成”实战项目**,带你从零掌握Python量化基础,并利用量化平台实现策略自动化回测(完整代码见文末)。
二、环境准备
1. 安装Python依赖库
python
复制
pip install requests pandas
三、核心代码实现(关键代码片段)
步骤1:API身份认证
python
复制
# world1.py 核心代码
import requests
from requests.auth import HTTPBasicAuth
with open('brain_credentials.txt') as f:
username, password = json.load(f)
sess = requests.Session()
sess.auth = HTTPBasicAuth(username, password)
response = sess.post('https://api.worldquantbrain.com/authentication')
print("认证状态:", response.status_code)
步骤2:获取基本面数据字段
python
复制
# world2.py 核心代码
def get_datafields(session, dataset_id='fundamental6'):
url = f"https://api.worldquantbrain.com/data-fields?dataset.id={dataset_id}"
response = session.get(url)
return [item['id'] for item in response.json()['results']]
datafields = get_datafields(sess)
print("获取到", len(datafields), "个基本面字段")
步骤3:批量生成Alpha策略
python
复制
# world3.py 核心代码(简化版)
alpha_expressions = []
for field in datafields:
expr = f"group_rank(ts_rank({field}, 200), industry)"
alpha_expressions.append(expr)
print("生成", len(alpha_expressions), "条策略表达式")
四、部署环节(隐藏坑点预警!)
关键问题1:API调用频率限制
Brain平台对高频请求会触发限流,直接连续提交100+策略会导致IP封禁!
关键问题2:参数组合陷阱
不同neutralization
(行业中性化)参数对收益影响极大,错误配置可能使策略失效。
五、完整代码获取
为避免踩坑,我已整理:
- 《运行环境的准备》
- 《零基础学量化》:免费的培训资料,指导你渡过新手期
- 《完整代码》:可直接运行,进行量化分析
👉 扫码添加助手微信,备注“量化项目”自动获取
(代码仓库README中附说明)
六、效果展示
通过优化后的脚本,成功回测1200+策略,筛选出年化收益>12.5%的有效因子20个:
复制
[2023-08-20] Alpha#329 回测完成 | 年化收益 18.7%
[2023-08-20] Alpha#582 回测完成 | 年化收益 22.3%
下期预告:《用Python实现多因子合成:打造稳定收益的量化组合》
声明:本文代码仅供学习交流,严禁商用!