排列组合公式推导

全排列:
共n个球,取n个球,有多少种排列?

要从n个球中取n个球,可以想象有n个位置,一个位置放一个球。
第一个位置,有n种选择,然后第2个位置,剩n-1种选择,第3个位置,剩n-2种选择,…依次类推,第n个位置,只剩1种选择。

所以,n个位置共有
n *(n-1)*(n-2)*…* 1 = n!
种排列。
(ps:这里其实用到了分步计数乘法原理)

所以全排列公式:
A n n = n ! A_n^n = n! Ann=n!


非全排列:
共n个球,取m个球,有多少种排列?

要从n个球中取m个球,可以想象有m个位置,一个位置放一个球。
第一个位置,有n种选择,然后第2个位置,剩n-1种选择,第3个位置,剩n-2种选择,…依次类推,第m个位置,只剩n-m+1种选择。

所以,m个位置共有
n *(n-1)*(n-2)*…* (n-m+1)
= [ n *(n-1)*(n-2)*…* 1 ] / [ (n-m) * (n-m-1) * … * 1]
= n! / (n-m)!
种排列。
(ps:这里也用到了分步计数乘法原理)

所以非全排列公式:
A n m = n ! / ( n − m ) ! A_n^m = n!/(n-m)! Anm=n!/(nm)


组合:

共n个球,取m个球,有多少种组合?

n个球中取m个球的排列,可以看作:先从n个球中取m个球进行组合,然后再对每个组合进行全排列。
即:
A n m = C n m ∗ A m m A_n^m = C_n^m * A_m^m Anm=CnmAmm
(ps:这里其实也用到了分步计数乘法原理)



所以组合公式:
C n m = A n m / A m m = A n m / m ! = [ n ! / ( n − m ) ! ] / m ! = n ! / [ m ! ∗ ( n − m ) ! ] C_n^m = A_n^m / A_m^m=A_n^m /m!= [n!/(n−m)!]/m!=n!/[m!*(n-m)!] Cnm=Anm/Amm=Anm/m!=[n!/(nm)!]/m!=n!/[m!(nm)!]

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值