【问题描述】
给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒)。请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现。
【输入格式】
第一行输入一个正整数n。
以下n行每行两个字母,表示这两个字母需要相邻。
【输出格式】
输出满足要求的字符串。
如果没有满足要求的字符串,请输出“No Solution”。
如果有多种方案,请输出前面的字母的ASCII编码尽可能小的(字典序最小)的方案
【输入样例】
4
aZ
tZ
Xt
aX
【输出样例】
XaZtX
【数据范围】
不同的无序字母对个数有限,n的规模可以通过计算得到
这道题实质上是无向欧拉路径问题,需判断连个条件,一个是图要基连通,一个是除两个点以外其余点的度要为偶数。这道题我用的是邻接表,不如用邻接矩阵写起来方便。所以在欧拉路问题时可以优先考虑邻接矩阵。
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=1000;
vector<int>e;
int n,d[150],s=maxn,vis[maxn];
char ch[maxn][5];
struct data
{
int v,id;
};
vector<data>g[150];
bool cmp(data a,data b)
{
return a.v<b.v;
}
void dfs(int i)
{
for(int k=0;k<g[i].size();k++)
{
int j=g[i][k].v,id=g[i][k].id;
if(vis[id]) continue;
vis[id]=1;
dfs(j);
}
e.push_back(i);
}
bool check()
{
int cnt=0;
for(int i='A';i<='z';i++)
{
if(d[i]%2)
{
if(cnt==0) s=maxn;
cnt++;
s=min(s,i);
}
}
if(cnt!=0&&cnt!=2) return 0;
memset(vis,0,sizeof(vis));
dfs(s);
if(e.size()!=n+1) return 0;
return 1;
}
int main()
{
//freopen("1.txt","r",stdin);
scanf("%d",&n);
memset(d,0,sizeof(d));
for(int i=1;i<=n;i++)
{
scanf("%s",ch[i]);
g[ch[i][0]].push_back((data){ch[i][1],i});
g[ch[i][1]].push_back((data){ch[i][0],i});
d[ch[i][1]]++,d[ch[i][0]]++;
s=min(s,(int)ch[i][0]),s=min(s,(int)ch[i][1]);
}
for(int i='A';i<='z';i++)
{
sort(g[i].begin(),g[i].end(),cmp);
}
if(check())
{
for(int i=e.size()-1;i>=0;i--)
printf("%c",e[i]);
}
else printf("No Solution\n");
return 0;
}