模块补充

time模块详解:

得到/etc/group/文件的最后一次修改时间,并保存在date.txt下

import os
import time
time = os.path.getctime('/etc/group')
tuple_time = time.localtime(time)
#os.path.getctime 输出文件创建时间
#os.path.getatime 输出最近访问时间
#os.path.getmtime 输出最近修改时间
year = tuple_time.tm_year
month = tuple_time.tm_mon
day = tuple_time.tm_mday
with open('date.txt', 'w') as f:
    f.write("%d %d %d" %(year, month, day))

字符串格式转换为元组

import time
s = '2018-10-10'
print(time.strptime(s, '%Y-%m-%d'))
s_time = '12:12:30'
print(time.strptime(s_time, '%H:%M:%S'))
输出:
time.struct_time(tm_year=2018, tm_mon=10, tm_mday=10, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=2, tm_yday=283, tm_isdst=-1)
time.struct_time(tm_year=1900, tm_mon=1, tm_mday=1, tm_hour=12, tm_min=12, tm_sec=30, tm_wday=0, tm_yday=1, tm_isdst=-1)

把元组的时间转换为时间戳

import time
tuple_time = time.localtime()
print(time.mktime(tuple_time))
输出:
1536931085.0

把元组的时间转换字符串格式

import  time
print(time.strftime('%m-%d'))
print(time.strftime('%Y-%m-%d'))
print(time.strftime('%T'))
print(time.strftime('%F'))
输出:
09-14
2018-09-14
21:19:29
2018-09-14

datetime 模块

from datetime import  date
from datetime import  time
from datetime import  datetime
from datetime import  timedelta
print(date.today())#打印今天的时间
d = date.today()
print(d)
delta = timedelta(days=3)#要减去的天数
print(d - delta)#打印减去天数后的时间
d = datetime.now()
print(d)
输出:
2018-09-14
2018-09-14
2018-09-11
2018-09-14 21:23:23.983153

json模块

d = {'name': 'fentiao'}
jsonStr = json.dumps(d)#把字典形式转换成字符形式
print(jsonStr)
print(type(jsonStr))
输出:
{"name": "fentiao"}
<class 'str'>
import json
l = [1, 2, 3, 4]
jsonLi = json.dumps(l)#把列表形式转换为字符
print(jsonLi, type(jsonLi))
输出:
[1, 2, 3, 4] <class 'str'>

difflib模块

import  difflib  #作用时对比文本之间的差异
file1 = '/etc/passwd'
file2 = '/tmp/passwd'
with open(file1)  as f1, open(file2) as f2:
    text1 = f1.readlines()
    text2 = f2.readlines()
d = difflib.HtmlDiff()  
with open("passwd.html", 'w') as f:
    f.write(d.make_file(text1, text2))
内容概要:本文介绍了多种基于Matlab和Python的状态估计方法,重点聚焦于含有异常值的观测信号处理技术,涵盖卡尔曼滤波、加权最小二乘法、中位数估计、粒子滤波等多种算法在电力系统、电池寿命预测、信号处理等领域的应用。文中提供了完整的代码实现方案,并结合实际应用场景如电力系统状态估计、轴承故障诊断、负荷预测等进行验证,展示了不同算法在抗干扰性和精度方面的表现。此外,文档还列举了大量相关科研方向的技术支持内容,包括智能优化算法、机器学习、信号处理、路径规划、电力系统管理等多个领域。; 适合人群:具备一定编程基础,熟悉Matlab或Python语言,从事自动化、电气工程、控制科学与工程、信号处理等相关领域的研究生、科研人员及工程师;有一定科研经验并希望复现或改进现有算法的研究者。; 使用场景及目标:①解决观测数据中【状态估计】观测信号(包括异常值)的状态估计方法(Matlab代码实现)含有异常值时的状态估计问题,提升系统鲁棒性;②复现经典或前沿论文中的算法模型,如卡尔曼-加权最小二乘(KEWLS)、粒子滤波寿命预测等;③开展电力系统、故障诊断、多源数据融合等相关课题研究,支持算法开发与仿真验证。; 阅读建议:建议读者按目录顺序系统浏览,优先掌握核心算法原理后再结合提供的Matlab/Python代码进行调试与实验;对于欲深入研究者,可借助文中提供的网盘资源获取完整代码包,辅助完成论文复现或项目开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值