随机过程(2.1)—— 多维随机变量(随机向量)

  • 随机过程本质就是一组与时间相关的随机变量,描述系统在 一系列时刻所处的状态。因此,我们首先补充关于多维随机变量(随机向量)的内容
  • 注:本文中加粗大写字母代表矩阵(如 A , B , L \pmb{A,B,L} A,B,L) 或随机向量(如 X , Y \pmb{X,Y} X,Y);加粗小写字母代表数的向量(如 a , b \pmb{a,b} a,b);普通大写字母代表一个随机变量(如 X , Y X,Y X,Y

1. 多维 r.v. 的期望和方差

  • 记多维 r.v.s. 为 X = [ X 1 X 2 ⋮ X n ] , Y = [ Y 1 Y 2 ⋮ Y n ] \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix}, \pmb{Y} = \begin{bmatrix}Y_1\\Y_2\\\vdots \\Y_n \end{bmatrix} X= X1X2Xn ,Y= Y1Y2Yn
    1. 期望 E X = [ E X 1 E X 2 ⋮ E X n ] E\pmb{X} = \begin{bmatrix}EX_1\\EX_2\\\vdots \\EX_n \end{bmatrix} EX= EX1EX2EXn
    2. 方差(矩阵)
      Var ( X ) = ( Cov ( X i , X j ) ) n × n = ( E [ ( X i − E X i ) ( X j − E X j ) ] ) n × n = E [ ( X − E X ) ( X − E X ) ⊤ ] \begin{aligned} \text{Var}(\pmb{X}) &= \big(\text{Cov}(X_i,X_j)\big)_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(X_j-EX_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top \big]\end{aligned} Var(X)=(Cov(Xi,Xj))n×n=(E[(XiEXi)(XjEXj)])n×n=E[(XEX)(XEX)]
    3. 协方差(矩阵)
      Cov ( X , Y ) = ( Cov ( X i , Y j ) ) n × n = ( E [ ( X i − E X i ) ( Y j − E Y j ) ] ) n × n = E [ ( X − E X ) ( Y − E Y ) ⊤ ] \begin{aligned} \text{Cov}(\pmb{X},\pmb{Y}) &= (\text{Cov}(X_i,Y_j))_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(Y_j-EY_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{Y}-E\pmb{Y})^\top\big] \end{aligned} Cov(X,Y)=(Cov(Xi,Yj))n×n=(E[(XiEXi)(YjEYj)])n×n=E[(XEX)(YEY)]
  • 方差矩阵性质: Var ( A X ) = A Var ( X ) A ⊤ \text{Var}(\pmb{AX}) = \pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top Var(AX)=AVar(X)A,证明如下
    Var ( A X ) = E [ ( A X − E A X ) ( A X − E A X ) ⊤ ] = E [ ( A X − A E X ) ( A X − A E X ) ⊤ ] = A E [ ( X − E X ) ( A ( X − E X ) ⊤ ) ] = A E [ ( X − E X ) ( X − E X ) ⊤ A ⊤ ] = A E [ ( X − E X ) ( X − E X ) ⊤ ] A ⊤ = A Var ( X ) A ⊤ \begin{aligned} \text{Var}(\pmb{AX}) &= E\big[(\pmb{AX}-E\pmb{AX})(\pmb{AX}-E\pmb{AX})^\top\big]\\ &= E\big[(\pmb{AX}-\pmb{A}E\pmb{X})(\pmb{AX}-\pmb{A}E\pmb{X})^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{A}(\pmb{X}-E\pmb{X})^\top)\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\pmb{A}^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\big]\pmb{A}^\top\\ &=\pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top \end{aligned} Var(AX)=E[(AXEAX)(AXEAX)]=E[(AXAEX)(AXAEX)]=AE[(XEX)(A(XEX))]=AE[(XEX)(XEX)A]=AE[(XEX)(XEX)]A=AVar(X)A 说明:随机变量的线性组合仍是随机变量,对于一组随机变量,或者 “随机向量” 而言,可以对它们进行线性组合得到一个新的 “随机向量”,并用矩阵形式表示为 A r × n X n × 1 = X r × 1 ′ \pmb{A}_{r\times n}\pmb{X}_{n\times 1} = \pmb{X}'_{r\times 1} Ar×nXn×1=Xr×1,即上式中 A X \pmb{AX} AX

2. 多维 r.v. 的分布函数

  • 对于多维 r.v.s.(随机向量) X = [ X 1 X 2 ⋮ X n ] \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix} X= X1X2Xn ,其分布函数定义为
    F ( X ) = F ( X 1 , X 2 , . . . , X n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , . . . , X n ≤ x n ) = P ( X ≤ x ) F(\pmb{X}) = F(X_1,X_2,...,X_n) = P(X_1\leq x_1,X_2 \leq x_2,...,X_n\leq x_n) = P(\pmb{X} \leq \pmb{x}) F(X)=F(X1,X2,...,Xn)=P(X1x1,X2x2,...,Xnxn)=P(Xx)
  • 两道例题
    1. X t = ξ c o s t X_t = \xi cost Xt=ξcost,其中 P ( ξ = 1 ) = P ( ξ = 2 ) = P ( ξ = 3 ) = 1 3 , t ∈ R P(\xi=1)=P(\xi=2)=P(\xi=3)=\frac{1}{3},t\in\mathbb{R} P(ξ=1)=P(ξ=2)=P(ξ=3)=31,tR,这样就可以通过选取不同的实数 t t t 得到任意维随机向量 { X t } \{X_t\} {Xt}。求一维分布 F ( x ; π 4 ) , F ( x ; π 2 ) F(x;\frac{\pi}{4}),F(x;\frac{\pi}{2}) F(x;4π),F(x;2π) 和二维分布 F ( x 1 , x 2 ; 0 , π 3 ) F(x_1,x_2;0,\frac{\pi}{3}) F(x1,x2;0,3π)
    2. X t = ξ + η t X_t = \xi +\eta t Xt=ξ+ηt,其中 ξ , η \xi,\eta ξ,η 为互相独立的标准正态分布, t ∈ R t\in\mathbb{R} tR,这样就可以通过选取不同的实数 t t t 得到任意维随机向量 { X t } \{X_t\} {Xt},求一维分布和二维分布
      在这里插入图片描述
      注:右边第1题答案中第3问,分布列应该是 X t = π 3 = 1 2 , 1 , 3 2 X_{t=\frac{\pi}{3}} = \frac{1}{2},1,\frac{3}{2} Xt=3π=21,1,23,订正一下

3. 多维 r.v. 的函数(统计量)的概率密度

  • 以二维情况为例,设二维 r.v. X = ( X 1 , X 2 ) \pmb{X}=(X_1,X_2) X=(X1,X2) 的概率密度函数为
    f X ( x 1 , x 2 ) = { f X G ( x 1 , x 2 ) , ( x 1 , x 2 ) ∈ G ⊂ R 0 , ( x 1 , x 2 ) ∉ G f_{\mathbf{X}}(x_1,x_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G(x_1,x_2) &&,(x_1,x_2)\in G \subset \mathbb{R} \\ &0 &&,(x_1,x_2)\notin G\\ \end{aligned} \right. fX(x1,x2)={fXG(x1,x2)0,(x1,x2)GR,(x1,x2)/G 当有 { Y 1 = g 1 ( X 1 , X 2 ) Y 2 = g 2 ( X 1 , X 2 ) \left\{\begin{aligned}&Y_1 = g_1(X_1,X_2) \\&Y_2 = g_2(X_1,X_2) \end{aligned}\right. {Y1=g1(X1,X2)Y2=g2(X1,X2) 时,求 Y = ( Y 1 , Y 2 ) \pmb{Y} = (Y_1,Y_2) Y=(Y1,Y2) 的概率密度函数 f Y ( y 1 , y 2 ) f_{\mathbf{Y}}(y_1,y_2) fY(y1,y2)
  • 遵循以下过程求解
    1. 依题意,对于 X 1 , X 2 X_1,X_2 X1,X2 的任意取值 x 1 , x 2 x_1,x_2 x1,x2,变换 T T T
      T : { y 1 = g 1 ( x 1 , x 2 ) y 2 = g 2 ( x 1 , x 2 ) T:\left\{ \begin{aligned} &y_1 = g_1(x_1,x_2) \\ &y_2 = g_2(x_1,x_2) \end{aligned} \right. T:{y1=g1(x1,x2)y2=g2(x1,x2) 利用变换 T T T,把取值范围变换过来,即利用所有概率非0的 ( x 1 , x 2 ) (x_1,x_2) (x1,x2) 找出所有概率非零的 ( y 1 , y 2 ) (y_1,y_2) (y1,y2)
      G ∗ = T ( G ) G^* = T(G) G=T(G)
    2. 下面求 T T T 的反函数(即利用 y \pmb{y} y 表示 x \pmb{x} x),先假设有唯一的反函数
      { x 1 = x 1 ( y 1 , y 2 ) x 2 = x 2 ( y 1 , y 2 ) \left\{ \begin{aligned} &x_1 = x_1(y_1,y_2) \\ &x_2 = x_2(y_1,y_2) \end{aligned} \right. {x1=x1(y1,y2)x2=x2(y1,y2)
    3. 计算 Jacobi 行列式 (Jacobi 矩阵的行列式)
      ∣ J ∣ = ∣ ∂ ( x 1 , x 2 ) ∂ ( y 1 , y 2 ) ∣ = ∣ ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 2 ∣ |\pmb{J}| = \begin{vmatrix} \frac{\partial(x_1,x_2)}{\partial(y_1,y_2)}\end{vmatrix} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} J= (y1,y2)(x1,x2) = y1x1y2x1y1x2y2x2 得到 Y = { Y 1 , Y 2 } \pmb{Y} = \{Y_1,Y_2\} Y={Y1,Y2} 的 p.d.f. 为
      f Y ( y 1 , y 2 ) = { f X G ( x 1 ( y 1 , y 2 ) , x 2 ( y 1 , y 2 ) ) ∣ J ∣ , ( y 1 , y 2 ) ∈ G ∗ 0 , ( y 1 , y 2 ) ∉ G ∗ f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G\big(x_1(y_1,y_2),x_2(y_1,y_2)\big) |\pmb{J}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right. fY(y1,y2)={fXG(x1(y1,y2),x2(y1,y2))J0,(y1,y2)G,(y1,y2)/G
    4. 若第 2 步中的反函数不唯一,则对每个反函数 x ( i ) \pmb{x}^{(i)} x(i) 计算对应的 Jacobi 行列式 ∣ J ( i ) ∣ , i = 1 , 2 , . . . , n |\pmb{J}^{(i)}|,i=1,2,...,n J(i),i=1,2,...,n,最后得到 Y = { Y 1 , Y 2 } \pmb{Y} = \{Y_1,Y_2\} Y={Y1,Y2} 的 p.d.f. 为
      f Y ( y 1 , y 2 ) = { ∑ i = 1 n f X G ( x 1 ( i ) ( y 1 , y 2 ) , x 2 ( i ) ( y 1 , y 2 ) ) ∣ J ( i ) ∣ , ( y 1 , y 2 ) ∈ G ∗ 0 , ( y 1 , y 2 ) ∉ G ∗ f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &\sum_{i=1}^nf_{\mathbf{X}}^G\big(x_1^{(i)}(y_1,y_2),x_2^{(i)}(y_1,y_2)\big) |\pmb{J}^{(i)}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right. fY(y1,y2)= i=1nfXG(x1(i)(y1,y2),x2(i)(y1,y2))J(i)0,(y1,y2)G,(y1,y2)/G
  • 例题:
    1. 设 r.v.s { X , Y } \{X,Y\} {X,Y} X , Y ∼ ϵ ( 1 ) X,Y\sim \epsilon(1) X,Yϵ(1) 且相互独立,对于如下线性变换,求 g ( u , v ) g(u,v) g(u,v) 的 p.d.f
      { U = X + Y V = X / Y \left\{ \begin{aligned} &U = X+Y \\ &V = X/Y \end{aligned} \right. {U=X+YV=X/Y 注意 X , Y X,Y X,Y 独立 ⇔ F X , Y ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) FX,Y(x,y)=FX(x)FY(y),答案如下
      在这里插入图片描述

    2. 设 r.v.s { X , Y } \{X,Y\} {X,Y} X , Y ∼ N ( 0 , σ 2 ) X,Y\sim N(0,\sigma^2) X,YN(0,σ2) 且相互独立,对于如下线性变换,求 g ( u , v ) g(u,v) g(u,v) 的 p.d.f
      { U = X 2 + Y 2 V = X / Y \left\{ \begin{aligned} &U = \sqrt{X^2+Y^2} \\ &V = X/Y \end{aligned} \right. {U=X2+Y2 V=X/Y 注意 X , Y X,Y X,Y 独立 ⇔ F X , Y ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) FX,Y(x,y)=FX(x)FY(y),答案如下
      在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值