使用K8s调度Nvidia GPU

本文详述了在Kubernetes集群上配置Nvidia GPU的步骤,包括安装Nvidia驱动,部署nvidia-docker-runtime,配置各节点,启用Kubernetes中的GPU支持,并演示了启动GPU任务的方法。
摘要由CSDN通过智能技术生成

Kubernetes配置与集群监控的搭建Docker常用命令中,我们介绍了如何安装Docker以及Kubernetes。对于集群而言,本文将更进一步地介绍如何使用Docker+K8s进行集群的GPU管理。

安装Nvidia驱动

Nvidia的驱动可以在官网下载。注意自己的系统内核以及显卡型号。安装完成后,在命令行使用nvidia-smi命令来查看显卡列表以及相关信息。如果成功安装,将会看到如下的结果。

~$ nvidia-smi
Sat Nov 13 22:21:26 2021       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02    Driver Version: 470.57.02    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+=========
Kubernetes 1.20.0提供了GPU调度的支持,通过添加节点标签和调度器配置,可以将GPU资源分配给特定的容器。下面是实现GPU调度的步骤: 1. 在节点上安装GPU驱动程序和CUDA运行时环境,并确保它们可以正常工作。 2. 为GPU节点添加标签。例如,可以为节点添加一个名为“gpu”的标签: ``` kubectl label nodes <node-name> gpu=true ``` 3. 在Pod定义中添加GPU资源请求和限制。例如,可以使用以下定义: ``` apiVersion: v1 kind: Pod metadata: name: gpu-pod spec: containers: - name: gpu-container image: nvidia/cuda:11.1-base resources: requests: nvidia.com/gpu: 1 limits: nvidia.com/gpu: 2 ``` 这将请求1个GPU资源,并将限制设置为2个GPU资源。 4. 使用GPU调度器配置来调度Pod。可以使用以下配置: ``` apiVersion: kubescheduler.config.k8s.io/v1beta1 kind: KubeSchedulerConfiguration schedulerName: default-scheduler plugins: score: enabled: - name: nvidia-gpu disabled: - name: pod-nodelabel ``` 这将启用“nvidia-gpu”插件并禁用“pod-nodelabel”插件。 5. 将调度器配置文件添加到Kubernetes集群中: ``` kubectl apply -f scheduler-config.yaml ``` 其中,scheduler-config.yaml是调度器配置文件的名称。 6. 将Pod调度GPU节点: ``` kubectl create -f gpu-pod.yaml ``` 其中,gpu-pod.yaml是包含GPU资源请求和调度器配置的Pod定义文件。 7. 确认Pod已经分配了GPU资源: ``` kubectl describe pod gpu-pod ``` 在输出中,应该可以看到GPU资源的分配情况。 通过这些步骤,就可以在Kubernetes 1.20.0中实现GPU调度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值