Description
你有n个砝码,均为1克,2克或者3克。你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系。
你把其中两个砝码A和B放在天平的左边,需要另外选出两个砝码放在天平的右边。问:有多少种选法使得天平的左
边重(c1)、一样重(c2)、右边重(c3)?(只有结果保证惟一的选法才统计在内)
Input
第一行包含三个正整数n,A,B(1<=A,B<=N,A和B不相等)。砝码编号为1~N。以下n行包含重量关系矩阵,
其中第i行第j个字符为加号“+”表示砝码i比砝码j重,减号“-”表示砝码i比砝码j轻,等号“=”表示砝码i和砝
码j一样重,问号“?”表示二者的关系未知。存在一种情况符合该矩阵
Output
仅一行,包含三个整数,即c1,c2和c3。
Sample Input
6 2 5
?+????
-?+???
?-????
????+?
???-?+
????-?
?+????
-?+???
?-????
????+?
???-?+
????-?
Sample Output
1 4 1
HINT
【数据规模】 4<=n<=50
Source
思路题
把相等的用并查集搞一搞
其他关系,如果一个东西有+有-,那么它是2,并可以更新其他东西
然后把每个的[l,r]搞出来
枚举,check对应关系
看了题解才知道应该用sgn()判,不然3!=1+1会挂
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 52;
int fa[MAXN], l[MAXN], r[MAXN], g[MAXN][MAXN], v[MAXN];
int ans1, ans2, ans3;
int n, A, B;
int q[MAXN], top;
char ch[MAXN][MAXN];
inline int findfa(int x) { while( x ^ fa[ x ] ) x = fa[ x ] = fa[ fa[ x ] ]; return x; }
inline void uni(int x, int y) { fa[ findfa( x ) ] = findfa( y ); }
inline int sgn(int x) { return !x ? 0 : ( x > 0 ? 1 : -1 ); }
int main()
{
scanf( "%d%d%d", &n, &A, &B );
for( int i = 1 ; i <= n ; i++ ) fa[ i ] = i;
for( int i = 1 ; i <= n ; i++ )
{
scanf( "%s", ch[ i ] + 1 );
for( int j = 1 ; j <= n ; j++ ) if( ch[ i ][ j ] == '=' ) uni( i, j );
}
for( int i = 1 ; i <= n ; i++ )
for( int j = 1 ; j <= n ; j++ )
if( ch[ i ][ j ] == '+' ) g[ findfa( i ) ][ findfa( j ) ] = 1;
else if( ch[ i ][ j ] == '-' ) g[ findfa( i ) ][ findfa( j ) ] = -1;
for( int i = 1 ; i <= n ; i++ )
if( findfa( i ) == i ) q[ ++top ] = i;
for( int i = 1 ; i <= top ; i++ )
{
bool L = 0, R = 0;
for( int j = 1 ; j <= top ; j++ ) L |= ( g[ q[ i ] ][ q[ j ] ] == 1 ), R |= ( g[ q[ i ] ][ q[ j ] ] == -1 );
if( !L || !R ) continue;
v[ q[ i ] ] = 2;
for( int j = 1 ; j <= top ; j++ )
if( g[ q[ i ] ][ q[ j ] ] == 1 ) v[ q[ j ] ] = 1;
else if( g[ q[ i ] ][ q[ j ] ] == -1 ) v[ q[ j ] ] = 3;
}
for( int i = 1 ; i <= top ; i++ )
{
l[ q[ i ] ] = 1, r[ q[ i ] ] = 3;
if( v[ q[ i ] ] ) l[ q[ i ] ] = r[ q[ i ] ] = v[ q[ i ] ];
else for( int j = 1 ; j <= top ; j++ )
if( g[ q[ i ] ][ q[ j ] ] == 1 ) l[ q[ i ] ] = 2;
else if( g[ q[ i ] ][ q[ j ] ] == -1 ) r[ q[ i ] ] = 2;
}
for( int i = 1 ; i < n ; i++ ) if( i != A && i != B )
for( int j = i + 1 ; j <= n ; j++ ) if( j != A && j != B )
{
int fi = findfa( i ), fj = findfa( j ), fa = findfa( A ), fb = findfa( B );
int t1 = 0, t2 = 0, t3 = 0;
for( int vi = l[ fi ] ; vi <= r[ fi ] ; vi++ )
for( int vj = l[ fj ] ; vj <= r[ fj ] ; vj++ )
for( int va = l[ fa ] ; va <= r[ fa ] ; va++ )
for( int vb = l[ fb ] ; vb <= r[ fb ] ; vb++ )
{
int F[ 4 ] = { fi, fj, fa, fb };
int V[ 4 ] = { vi, vj, va, vb };
bool flag = true;
for( int x = 0 ; x < 4 ; x++ )
for( int y = 0 ; y < 4 ; y++ )
if( F[ x ] == F[ y ] && V[ x ] != V[ y ] ) { flag = false; break; }
for( int x = 0 ; x < 4 ; x++ )
for( int y = 0 ; y < 4 ; y++ )
if( g[ F[ x ] ][ F[ y ] ] && sgn( V[ x ] - V[ y ] ) != g[ F[ x ] ][ F[ y ] ] ) { flag = false; break; }
if( !flag ) continue;
if( va + vb > vi + vj ) t1 = 1;
if( va + vb == vi + vj ) t2 = 1;
if( va + vb < vi + vj ) t3 = 1;
}
if( t1 + t2 + t3 == 1 ) ans1 += t1, ans2 += t2, ans3 += t3;
}
cout << ans1 << ' ' << ans2 << ' ' << ans3 << endl;
}