数学建模预测类—【一元线性回归】

每日格言:行动是治愈恐惧的良药,而犹豫拖延将不断滋养恐惧.


前言

在具体讲述线性回归的有关算法和解题思路时,我们会先讲一些有关回归分析的基础(建议大家可以看一下,理解一下原理)已经懂了的友友可以直接跳过~😏🙌


一、什么是回归分析?

1.概念理解

在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关
的一种统计分析方法。

在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。

总而言之,回归分析通常用于预测分析以及发现变量之间的因果关系(通俗来讲就是🤔:根据已有数据验证自变量和因变量之间的某种函数关系是正确的)


2.分类和一般步骤
  • 回归分析有两种分类方式:

 根据变量的数目可以分为一元回归、多元回归
 根据自变量与因变量的表现形式,分为线性和非线性

根据排列组合(2X2)也就是回归分析包括四个方向:

①一元线性回归分析、②多元线性回归分析、③一元非线性回归分析、④多元非线性回归分析


  • 回归分析的一般步骤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自由的风.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值