每日格言:行动是治愈恐惧的良药,而犹豫拖延将不断滋养恐惧.
前言
在具体讲述线性回归的有关算法和解题思路时,我们会先讲一些有关回归分析的基础(建议大家可以看一下,理解一下原理)已经懂了的友友可以直接跳过~😏🙌
一、什么是回归分析?
1.概念理解
在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关
系的一种统计分析方法。
在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。
总而言之,回归分析通常用于预测分析以及发现变量之间的因果关系(通俗来讲就是🤔:根据已有数据验证自变量和因变量之间的某种函数关系是正确的)
2.分类和一般步骤
- 回归分析有两种分类方式:
根据变量的数目可以分为一元回归、多元回归
根据自变量与因变量的表现形式,分为线性和非线性
根据排列组合(2X2)也就是回归分析包括四个方向:
①一元线性回归分析、②多元线性回归分析、③一元非线性回归分析、④多元非线性回归分析
- 回归分析的一般步骤