- 博客(22)
- 收藏
- 关注
原创 KNN和KD树
k n n是前k个距离最近的点,而kd树是只找最近的一个点,疑问❓①找到最近的点然后呢?❓②kd树只找一个点会不会不准啊,较knn而言?
2023-07-24 21:32:58 105
原创 PCKV: Locally Differentially Private Correlated Key-Value Data Collection with Optimized Utility论文阅读
GRR、UE是两种不同编码方式,详细见王天豪老师的频率估计上图可以看到每个机制在不同条件下效果不一样。OUE和OLH的方差一致。DE(GRR)在d小的时候,效果比UE好;d大的时候,是OUE和OLH好。
2023-06-15 13:55:02 513
原创 关于在python中安装matlab.engine失败的解决办法
MATLAB 版本是 R2020b,Python 版本是3.6, 3.7, or 3.8,只用敲入下述代码即可成功安装如果是其他版本的matlab或者其他版本的python,那么。
2023-06-12 15:49:14 5247 1
原创 独热码、机器学习的经验风险最小化、SVM
这是理论上模型f(X)关于联合分布P(X,Y)的平均意义下的损失,称为风险函数或期望损失。经验风险最小化的策略认为,经验风险最小的模型就是最优的模型,F是假设空间。对数损失函数(也叫对数似然损失函数):L(Y,P(Y|X)) = - logP(Y|X)首先明确,经验风险最小化的一个例子是极大似然估计,那么找到最有可能的大概率值即可。②线性模型(w,b),其中,w表示向量,b表示常数,W^T* X也是一个常数。损失函数有0-1损失函数、平方损失函数、绝对损失函数、对数损失函数。损失函数值越小,模型就越好。
2023-05-17 09:45:35 156
原创 刘二大人的pytorch深度学习实践(六)
前段时间分别和两个研究方向类似的前辈交谈,虽然他们都计划不深造ldp领域,但都会成为优秀的程序员。有两句话我印象深刻,一句是:“··需要意志坚定。”这句话我就不解释了,自己领会。一句是,我和前辈说你就可以实现你的程序员梦了,前辈说,这不是梦,它只是一个职业。这两句话,与此时此刻正在看我博客的同学分享。
2023-05-14 12:17:48 153 3
原创 Bernstein inequality伯恩施坦不等式
概率论中,Bernstein inequalities给出了随机变量的和对平均值偏离的概率。我阅读的论文涉及到方差,上界,于是我对照变体公式的定义,发现它的Xi要有上界M,这对应了下图的2.有界性;转换后者之后会出现方差(因为E(x)=0,所以E(x^2)=Var(x)),可是前者没有说到方差!,但是感觉不是很准确,希望有同学完善下这方面的知识点,或者推荐看哪本书有这方面的点。,取值+1和-1的概率各是1/2,则对任意正数epsilon,有。论文讨论了方差,这对应了下图的3.方差界限。
2023-05-07 16:05:19 2036
原创 差分隐私常用到的字母
是针对有浮点数而言的;若整数取底和取顶,都是整数本身。⌊ x ⌋ 上面缺一横: 不大于x的最大整数。⌈ x ⌉,下面缺一横,不小于x的最小整数。给定一个数: 1.99。给定一个数: -1.1。
2023-04-17 15:14:53 603
原创 这是一篇关于本地化差分隐私LDP的文章,很长很长,一如滔滔江水,连绵不绝
拉普拉斯噪声:f(D)中有d维数据,它将d个拉普拉斯噪声加入每维的数据中,全局敏感度:每一维的对应向量之差的绝对值,求和,
2023-04-14 23:25:08 400
原创 刘二大人的pytorch深度学习实践(五)
旧版的nn.MSELoss()函数有reduce、size_average两个参数,新版的只有一个reduction参数了,功能是一样的。还有哦,每一次运行同样的代码,数据结果都不太一样,但是趋势和现象都一样。我们设置reduction='sum’或者reduction='mean’都对,前者是计算误差总和,后者是误差总和的均值,即1/N * sum ,两个作图图像一样,只是y轴的值不一样。试试,在源代码就改一行就够了,可以自己改一下优化器里面的参数,看看谁的优化器损失函数下降得快。⑤进行1000次迭代,
2023-04-07 11:34:18 122
原创 刘二大人的pytorch深度学习实践(四)
想法:因为Data:w、Grad:梯度函数都是Tensor类型,所以,我们在forward()函数后x*w也是Tensor类型,那么要写成输出w.grad.item()和w.grad.data,才能把他们当做值使用,.item()和.data不能构建计算图,而Tensor可以构建计算图。不同点:.data返回的是一个tensor,而.item()返回的是一个具体的数值。看了别的博主的.item,.data后,我自己也输出了这两个东西和各自的类型。意思是我声明我要计算梯度,因为默认是不计算梯度的。
2023-04-04 12:02:59 276
原创 刘二大人的pytorch深度学习实践(二)
③定义两个数组w_list和b_list,然后meshgrid到底面为w、b,将w的元组大小尺寸赋0给mse_list;①定义样本点x、y的值;④绘制3D图像函数,
2023-03-29 22:16:10 81
原创 RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response的公式证明
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response的公式证明
2023-02-04 17:02:31 425 2
原创 Optimal Randomised Response Mechanisms inDifferential Privacy差分隐私的最优随机响应机制
我补充他写的过程中不够具体的两处。1:论文第五页公式17和公式18的理解,2:论文第五页最后三行,为什么π不能取0和1的推导。这篇文章已有同学发布很棒的详细过程。
2022-11-05 17:21:02 254
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人