只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100者胜。
对于巴什博奕,那么我们规定,如果最后取光者输,那么又会如何呢?
(n-1)%(m+1)==0则后手胜利
先手会重新决定策略,所以不是简单的相反行的
例如n=15,m=3
后手 先手 剩余
0 2 13
1 3 9
2 2 5
3 1 1
1 0 0
先手胜利 输的人最后必定只抓走一个,如果>1个,则必定会留一个给对手
取石子(一)
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
2
-
描述
-
一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子。游戏的规则是这样的。设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利。我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?
-
输入
-
第一行是一个正整数n表示有n组测试数据
输入有不到1000组数据,每组数据一行,有两个数N和M,之间用空格分隔。
输出
- 对于每组数据,输出一行。如果先取的TT可以赢得游戏,则输出“Win”,否则输出“Lose”(引号不用输出) 样例输入
-
2 1000 1 1 100
样例输出
-
Lose Win
-
第一行是一个正整数n表示有n组测试数据
算法:
最多取m个,则如果总数n%(m+1)为0,则无论先手取了几个t1,第二个人都取t2,使得t1+t2==m+1即可获胜
相反 如果n%(m+1)!=0 ,则先手不余数去掉,之后按上述方案,即可获胜
#include<iostream>
using namespace std;
int main()
{
int k;
long m,n;
cin>>k;
while(k--)
{
cin>>n>>m;
if(n%(m+1)==0)
cout<<"Lose"<<endl;
else
cout<<"Win"<<endl;
}
}
通过打听,Lele知道这场拍卖的规则是这样的:刚开始底价为0,两个人轮流开始加价,不过每次加价的幅度要在1~N之间,当价格大于或等于田地的成本价 M 时,主办方就把这块田地卖给这次叫价的人。
Lele和Yueyue虽然考试不行,但是对拍卖却十分精通,而且他们两个人都十分想得到这块田地。所以他们每次都是选对自己最有利的方式进行加价。
由于Lele字典序比Yueyue靠前,所以每次都是由Lele先开始加价,请问,第一次加价的时候,
Lele要出多少才能保证自己买得到这块地呢?
Lele和Yueyue虽然考试不行,但是对拍卖却十分精通,而且他们两个人都十分想得到这块田地。所以他们每次都是选对自己最有利的方式进行加价。
由于Lele字典序比Yueyue靠前,所以每次都是由Lele先开始加价,请问,第一次加价的时候,
Lele要出多少才能保证自己买得到这块地呢?
Input
本题目包含多组测试,请处理到文件结束(EOF)。每组测试占一行。
每组测试包含两个整数M和N(含义见题目描述,0<N,M<1100)
每组测试包含两个整数M和N(含义见题目描述,0<N,M<1100)
Output
对于每组数据,在一行里按递增的顺序输出Lele第一次可以加的价。两个数据之间用空格隔开。
如果Lele在第一次无论如何出价都无法买到这块土地,就输出"none"。
如果Lele在第一次无论如何出价都无法买到这块土地,就输出"none"。
Sample Input
4 2 3 2 3 5
Sample Output
1 none 3 4 5
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int main()
{
int t,n,m,i;
while(~scanf("%d%d",&n,&m))
{
if(n<=m)//n<=m先手必胜
{
for(i = n; i<=m; i++)
if(i==n)
printf("%d",i);
else
printf(" %d",i);
printf("\n");
continue;
}
if(n%(m+1))//必胜态
{
int flag = 0;
for(i = 1; i<=m; i++)
{
if((n-i)%(m+1)==0)//必须留下m+1的倍数
{
if(flag == 0)
printf("%d",i);
else
printf(" %d",i);
flag++;
}
}
printf("\n");
}
else
printf("none\n");
}
return 0;
}